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Abstract

Using optical triangulation methods to measure the
shape of translucent objects is difficult because subsurface
scattering contaminates measurements of the “direct” re-
flection at the surface. A number of recent papers have
shown that high-frequency sinusoidal illumination patterns
allow isolating this direct component [16], which in turn
enables accurate estimation of the shape of translucent ob-
jects [4]. Despite these encouraging results, there is cur-
rently no rigorous mathematical analysis of the expected er-
ror in the measured surface as it relates to the parameters
of these systems: the frequency of the projected sinusoid,
the geometric configuration of the source and camera, and
the optical properties of the target object. We present such
an analysis, which confirms earlier empirical results and
provides a much needed tool for designing 3D scanners for
translucent objects.

1. Introduction
Measuring the 3D shape of real-world scenes is a pri-

mary goal of many computer vision systems. This problem
is particularly challenging for scenes that contain translu-
cent objects. Unlike opaque objects, which reflect incident
light back into the environment at their surface, translucent
objects exhibit subsurface scattering wherein a significant
portion of incident illumination scatters inside the object
before being re-emitted at a different surface location. Al-
though it is sometimes possible to first coat these objects
with a diffuse powder and then apply standard optical tri-
angulation techniques, there are many applications such as
scanning archaeological artifacts for which this is not prac-
tical.

It has recently been shown that by imaging translucent
surfaces under a series of shifted high-frequency illumina-
tion patterns, scattering at the surface (direct reflection) can
be reliably isolated from multiple scattering below the sur-
face (indirect reflection), a process known as optical descat-
tering [16]. In the particular case where the illumination
is a sinusoid, it is possible to incorporate traditional phase

profilometry techniques [21] to estimate the object’s surface
geometry based on the direct component alone [3, 4]. This
has proven to be a reliable way of estimating the 3D shape
of translucent objects.

Despite the promise of this approach, however, there is
currently no theory that connects the nature and magnitude
of the error in the estimated surface to the main parameters
in these systems: the spatial frequency of the projected sinu-
soid, the geometric setup of the source and camera, and the
optical properties of the target object. We derive a closed-
form analytic expression that relates these three compo-
nents. This allows one to compute the expected error for a
particular experimental setup or estimate a lower-bound on
the frequency of the projected sinusoid necessary to achieve
a desired level of accuracy.

2. Related work

Many techniques have been developed for measuring the
shape of opaque objects, whose appearance is character-
ized by the bidirectional reflectance distribution functions
(BRDF) [17]. In reality, all nonmetals exhibit some degree
of subsurface scattering, and using techniques that assume
a perfectly opaque response in these cases will produce er-
rors in the recovered geometry. For example, laser stripes
and other active lighting patterns are effectively blurred by
subsurface scattering and therefore the maximum response
observed by a camera can be below the true surface [6, 3]
as illustrated in figure 1. The following sections review
methods designed specifically for measuring the 3D shape
of translucent scenes.

2.1. Inverse rendering

One approach for scanning translucent objects is to per-
form inverse rendering and explicitly account for subsurface
scattering while optimizing for the geometry and material
parameters that best match a set of input images. How-
ever, this is an ill-posed problem in general, and a system
capable of capturing high-resolution geometry of complex
translucent objects has not yet been demonstrated [18, 20].
A related method is that of Gu et al. [7], which uses com-
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Figure 1. Translucent objects present difficulties for traditional op-
tical triangulation methods. (left) The maximum response of a
laser beam striking a translucent surface as seen by a camera is
often below the actual surface. (right) Active lighting patterns are
also blurred by the material, making it difficult to establish a cor-
rect correspondence between rays in a projector and camera.

pressive sensing to recover the volumetric density of semi-
transparent inhomogeneous participating media, but it is
not clear how this technique could be extended to optically
dense translucent objects with well-defined surfaces.

2.2. Diffuse and specular separation

The most common approach for extending optical trian-
gulation methods to handle translucent objects is to first iso-
late the direct reflection at the object surface before recov-
ering geometry. One set of techniques is based on the idea
that the specular component of the surface response is due
to light that reflects directly off of the object surface while
the diffuse component is produced by subsurface scattering.
Chen et al. [2] apply a simple threshold to a histogram of the
measured intensities in order to identify specular highlights,
which are subsequently used to estimate a high-resolution
normal field. A similar set of methods rely on color heuris-
tics to estimate normal fields of human faces [23] and repair
errors in a structured light scan [1]. These methods gener-
ally suffer in the presence of glossy highlights (as opposed
to sharp specular highlights), objects with a small specular
response, or objects whose diffuse color is similar to that
of the illuminant. Additionally, they require a very dense
sampling of light directions in order to observe the specular
highlight everywhere over the object surface.

2.3. Polarization difference imaging

If the light striking a surface is polarized, the portion that
is directly reflected at the surface typically retains this po-
larization, whereas subsurface scattering acts to depolarize
the light [22]. Under this assumption, the direct component
of the scene can be isolated by computing the difference
between images taken behind parallel and perpendicular po-
larization filters. This approach has been used in combina-
tion with sinusoidal illumination for recovering the geom-
etry of translucent objects [3]. Ma et al. [14] extend this
idea to use circularly polarized spherical gradient illumina-
tion in order to recover dense normal fields of translucent

objects. However, a limitation of these approaches is that,
for certain materials, light that has been scattered multiple
times may still retain a significant amount of polarization
and other materials are known to depolarize light that is re-
flected at the surface [3].

2.4. Optical descattering

Another approach to the separation of direct and indi-
rect illumination uses high-frequency spatially modulated
light to remove the subsurface scattering in a scene [16], a
process known as optical descattering. Light that scatters
multiple times within the material is significantly diffused
whereas light that scatters only once retains the projected
pattern and can be isolated. Specifically, a modulated light
source (e.g., a projector) illuminates a scene with a high-
frequency pattern and a series of images are captured while
this pattern is translated within the focal plane of the pro-
jector.

Nayar et al. [16] note that this descattering technique
can be integrated with a number of active scanning meth-
ods that also use high-frequency lighting patterns. Chen et
al. [4] present a method that uses sinusoidal patterns both
for the purpose of isolating the direct surface reflection and
for recovering depth using a standard phase unwrapping
technique, a special case of a broader class of phase pro-
filometry methods [21]. Holroyd et al. [10] demonstrate a
similar system that uses high-frequency sinusoidal patterns
in a multi-view stereo algorithm. Gupta et al. [8] analyze
the effect of defocus on this descattering process and show
how to both correct for it and leverage it for the purpose
of depth recovery. More recent work uses the light trans-
port equation to estimate each component of the indirect
response through a recursive procedure [15].

We build on this prior work by providing a radiometric
analysis in the specific case of sinusoidal illumination. This
analysis demonstrates the nature and degree of error in the
estimated surface for systems based on sinusoidal patterns.
The next section reviews the key ideas behind these systems
in greater detail.

3. Background: Depth estimation using active
sinusoidal illumination

Active stereo triangulation systems that use sinusoidal
lighting capture a sequence of images of a scene while it
is illuminated by a high-frequency sinusoidal pattern. Be-
tween each exposure, the sinusoid is translated within the
lightsource’s focal plane by a known amount. A key obser-
vation about this approach is that summing together multi-
ple sinusoids with the same frequency produces a sinusoid
that also has that frequency:∑

i

Ai cos(ft+ θi) +Gi = A cos(ft+ θ) +G. (1)
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Regardless of the properties of the scene, due to the lin-
earity of light transport and the closure of sinusoids un-
der addition, the intensities {Ii|i ∈ [1, n]} measured at
each camera pixel will trace a time-varying sinusoid, Ii =
A cos(ti+φ0)+G, where ti can be calculated from the spa-
tial frequency of the projected sinusoid and the magnitude
of the translation in the ith image. This fact makes sinu-
soidal lighting especially desirable for scanning translucent
objects: the signal measured at the camera has a simple re-
lationship to the signal produced by the source without hav-
ing to explicitly account for global illumination in the scene.
The per-pixel amplitude, phase, and gain can be computed
by solving:

cos(t1) − sin(t1) 1
...

cos(tn) − sin(tn) 1


a1a2
a3

 =


I1
...

In

 (2)

A =
√
a21 + a22 φ0 = arctan(a2/a1) G = a3

The initial phase offset at each pixel φ0 can be used to iden-
tify corresponding rays between the source and camera and
estimate geometry in a process known as phase profilome-
try [21]. However, many pixels along each epipolar line will
observe the same phase value. Resolving this “phase ambi-
guity” is a key problem and a number of solutions have been
developed (a good review is provided by Salvi et. al [19]).
In the following, we will not address this aspect of phase
profilometry and assume the ambiguity can be resolved us-
ing one of the available methods. Instead, our goal is to
analyze the effect of subsurface scattering on the recovered
phase value at each pixel and how this in turn biases the
estimated depth.

4. Analysis
As illustrated in Figure 2, we will assume the scene is

composed of a homogeneous flat translucent surface, which
ignores effects due to local curvature or thin shells. The
translucent medium is characterized by the absorption co-
efficient σa, scattering coefficient σs, and extinction coef-
ficient σt = σa + σs, as well as the medium’s index of
refraction η and phase function p(·, ·). A camera images
the scene while the only source of illumination is a light
source modulated to produce a spatially-varying sinusoid
(a “projector”). Translating this projected pattern produces
time-varying sinusoids along individual rays as they leave
the projector and strike the surface. Both the projector and
camera are assumed to be orthographic.

Paths of light can reach the camera along the view direc-
tion v either due to surface reflection (green), single scatter-
ing within the material (red), or multiple scattering (blue).
We ignore surface reflection by assuming the camera is not

lightsource

camera

medium

Figure 2. Setup and notation used in this paper. The vector b is
perpendicular to ωi and in the direction of the sinusoid projected
into the scene. The function p(ωi, ωo) is the material’s phase-
function.

positioned along the mirror direction r. At the surface, the
Fresnel equations predict the amount of light that is trans-
mitted into the medium and Snell’s law predicts the direc-
tion it travels due to refraction, −ωi. Light that enters the
object is eventually either absorbed or scattered until it exits
the medium. Scattering occurs according to the material’s
phase function p(ωi, ωo), which characterizes the angular
distribution of light scattered when striking a particle in the
medium.

Some portion of the incident light scatters exactly once
in the direction ωo and exits the medium at point x travel-
ing in the view direction v towards the camera. Another
portion will scatter multiple times before exiting at x in
this same direction. The key assumption in optical descat-
tering [16, 3, 4] is that the contribution made by multi-
ple scattering to the exiting light traveling along v is un-
affected (constant) under translations of the projected sinu-
soid. Therefore, it only affects the DC gain of the time-
varying sinusoid measured along the camera ray and can
be ignored (we describe a simulation we performed to vali-
date this important assumption in Section 6.1). Building on
this prior work, we will assume that only single scattering
contributes to the amplitude and phase of the time-varying
sinusoid measured along the camera ray.

Let Lo represent the response measured by the camera
along this ray. An analytic expression for Lo can be ob-
tained by integrating the contribution due to single scatter-
ing along the camera ray as it travels through the medium.
Let Fη represent the percentage of light lost at the sur-
face due to Fresnel effects while entering and exiting the
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medium, fsin represent the spatial frequency of the sinu-
soid, and φ0 represent the initial phase offset of the time-
varying sinusoid at point x. We integrate along s, the total
distance light travels through the medium – from the point
of entrance, to the scattering event, and to the point of exit.
Then, Lo can then be written as

Fηp(ωi, ωo)

∞∫
s=0

e−σts cos(fsin
(n · l)(b · ωo)(n · ωi)
(n · ωi) + (n · ωo)

s+φ0)

The rate at which the projected sinusoid oscillates along the
direction ωo depends both on the spatial frequency of the
sinusoid fsin as well as the sinusoid’s direction of variation
within the medium b, which is always perpendicular to ωi.

We use the relationship

∞∫
s=0

e−σs cos(As+ θ) =
cos(θ + arctan(A/σ))√

A2 + σ2
,

to derive a closed-form expression for Lo:

Lo =
Fηp(ωi, ωo)√
A2 + σ2

t

cos(φ0 + arctan(A/σt)) (3)

where

A = fsin
(n · l)(b · ωo)(n · ωi)
(n · ωi) + (n · ωo)

.

Note that the “phase error” ∆φ = arctan(A/σt). If
∆φ = 0 then the same phase produced along the projec-
tor ray l will be precisely measured along the camera ray v
that intersects it at point x. When this quantity is not zero,
this triangulation will intersect at some point away from x,
introducing an error in the estimated depth. Naturally, the
phase error depends on the geometric setup of the projector
and camera (through A), the extinction coefficient σt, and
indirectly on the index of refraction η (which determines ωi
and ωo).

5. Discussion
The phase error in equation 3 has a number of important

implications for scanning translucent objects. The phase er-
ror will impact recovered geometry differently based on the
specific experimental setup and reconstruction algorithm
that is used. Perhaps the simplest and most common setup
to consider uses one calibrated projector and one calibrated
camera, often referred to as “structured lighting”. In this
case, the geometric error depends on the phase offset scaled
by the period of the sinusoid along the camera ray v. Specif-
ically, the geometric error ε is equal to

ε =
∆φ

2π

(1− v · l)
fsin

. (4)

Figure 3. Legend for the different materials we consider in sec-
tion 5. Colors correspond to: σt = 0.1mm−1 (ocean water),
0.2mm−1 (chicken broth), 0.5mm−1 (potato), 1.0mm−1 (skin),
2.0mm−1 (marble). These are approximate values based on mea-
surements published by Jensen et al. [13].

This relationship allows one to establish upper bounds on
ε as a function of the material properties and system pa-
rameters. For example, we can answer the question: how
is ε affected by the spatial frequency of the sinusoid? Fig-
ure 4 visualizes this relationship by plotting ε, measured in
millimeters, for five different materials over a range of si-
nusoid frequencies (the graph actually shows the period).
Since the maximum error is bounded by one period of the
sinusoid, and assuming the phase ambiguity can be resolved
perfectly, ε tends to 0 as the frequency of the sinusoid ap-
proaches infinity. Of course, as the frequency increases the
ability of the camera to resolve it also decreases (discussed
in section 5.2). Additionally, note that for optically dense
materials such as marble, lower-frequency sinusoids have
less of an impact on ε, because light rays are not able to
penetrate as far into the medium.
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Figure 4. Geometric error ε for a structured lighting setup. Light
and view are at ±45◦ across the surface normal. The colored
lines correspond to the materials in figure 3. Ocean water (σt =
0.1mm−1) is the most translucent and has the largest phase offset
error (blue).
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Another interesting question is: for a given projector lo-
cation, where should the camera be placed to minimize ε?
This could be used, for example, to optimize a specific setup
or to drive a view planning algorithm. Figure 5 shows up-
per bounds on ε derived from equation 3 for a fixed projec-
tor located 45◦ off the surface normal, and view directions
that vary in the plane formed by the surface normal and di-
rection to the projector (i.e., l in figure 2). Note that as the
camera and projector become coaxial, each camera ray inte-
grates along a matching projector ray so that the phase error
is zero; however, the ability to robustly triangulate two rays
diminishes rapidly as the baseline becomes very small.

Figure 5. Phase error (top) and geometric error (bottom, in mm,
log-scale) for a light at 45◦ elevation angle and view directions
from −90◦ to 90◦. The index of refraction η = 1.55, and the
sinusoid frequency is 2π/5.0mm−1, modulated spatially in the
plane formed by the light and camera (worst case). The colored
lines correspond to the materials in figure 3.

Finally, we visualize the manner in which ε depends on
the material properties. Figure 6 plots ε for a specific cam-
era/projector configuration and a sinusoidal frequency of
2π/5.0 mm−1. Other frequencies follow a similar trend,
although the absolute error varies as seen in figure 4.

5.1. Relation to phase unwrapping

A common method for solving the phase ambiguity
problem is to project progressively lower-frequency sinu-
soidal patterns into the scene, until each point receives a
unique phase offset [5]. For translucent objects, figure 4
gives some insight into when this “phase unwrapping” may
fail. Note that modifying the sinusoid’s frequency can eas-

ily produce a large difference in the phase error in cer-
tain cases. If care is not taken in choosing these progres-
sively lower-frequency sinusoids, each iteration could make
the problem of localizing the correct period more difficult.
We expect equation 3 will help strengthen these techniques
when they are applied to translucent surfaces.

5.2. Amplitude loss

Although it is possible to decrease the phase error ar-
bitrarily by increasing the frequency of the sinusoid (fig-
ure 4), at some point this process breaks down. Each cam-
era pixel integrates over a finite region of the surface. This
can be modeled as a convolution of the scene radiance with
a compact kernel, which has the effect of diminishing the
measured amplitude of the time-varying sinusoid. At some
point it is no longer possible to reliably measure the ampli-
tude and, consequently, the phase. This effect was recently
analyzed and termed “amplitude loss” [10]. Combined with
this previous result, our analysis provides a tool for choos-
ing the optimal frequency in these types of systems: one
that is as small as possible to reduce ∆φ while not becom-
ing impractical due to amplitude loss.

6. Validation
We validated equation 3 using a volumetric ray-

tracer [11] to simulate a structured light setup (one projector
and one camera). This simulation included both single and
multiple scattering, and was used to verify our analysis over
a wide range of parameters including various indices of re-
fraction η and phase functions p(ωi, ωo). Figure 6 compares
our simulated data to the predictions made by equation 3 for
a range of extinction coefficients.

0 1 2 3 4 5
σt [1/mm]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
rr

o
r 

in
 g

e
o
m

e
tr

y
 [

m
m

]

Analytic Solution
Simulation

Figure 6. Geometric error ε as a function of the material extinction
coefficient for a light −30◦ and view 45◦ off of the surface normal
and a sinusoidal frequency of 2π/5.0mm−1. The analytic solu-
tion is derived from equation 3 and is compared to a simulation of
this setup using a physically-based volumetric ray-tracer [11].
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6.1. Multiple scattering

Although light that is scattered multiple times within a
translucent object contributes significantly to its overall ap-
pearance, for many materials it has a negligible effect on
the phase error. We performed an additional series of sim-
ulations to validate this assumption. We first computed the
phase at one camera pixel based on single scattering only,
followed by a full simulation that includes multiple scat-
tering. The projector and camera were both located ±45◦

off the surface normal, and the phase function was assumed
to be constant (i.e., the parameter g = 0 in the Henyey-
Greenstein function). We ran these simulations over a range
of extinction coefficients σt ∈ [0.1, 2.0] and spatial frequen-
cies fsin ∈ [0.04, 2.0]. In all of these cases, the difference
between the phases produced for single scattering only and
single+multiple scattering were on average 0.007 radians
apart with a standard deviation of 0.005. This offers further
support for our choice to assume that the phase is predomi-
nantly affected by single scattering.

7. Conclusion

We have presented a mathematical analysis of stereo tri-
angulation systems that use high-frequency sinusoids to es-
timate the geometry of translucent surfaces. Despite recent
empirical results that indicate the promise of this approach,
no theoretical study of the nature and magnitude of the er-
rors in the estimated surface had been performed. Our anal-
ysis assumes that single scattering within the object domi-
nates the response measured by the camera. Under this as-
sumption, we derived a closed-form expression that predicts
the error in the estimated phase as a function of the geomet-
ric arrangement of a projector and camera and the proper-
ties of the material (extinction coefficient, phase function,
and index of refraction). Equation 3 confirms a number of
earlier empirical observations and offers a tool for making
precise predictions about the operating tolerances and per-
formance of actual scanners. Further, it indicates the limi-
tations of phase unwrapping methods, which are commonly
used to resolve the phase ambiguity problem, in the case of
translucent scenes.

We expect this work will lead to further improvements
in active stereo techniques for translucent surfaces. This in-
cludes the possibility of estimating material properties, or
making more precise depth measurements, based on obser-
vations of how the phase measured at the camera is affected
by adjusting the frequency of the projected sinusoid. We
also plan to use this result to study more complex setups in-
cluding those that incorporate polarized filters [3] or com-
bine multiple views of the scene [9] to help identify corre-
sponding rays. Finally, more research is warranted on how
multiple scattering affects these systems. While our sim-
ulations indicate that it has only a very minor effect for a

wide range of common materials (section 6 and figure 6),
it is possible that this may not be the case for more exotic,
strongly anisotropic, materials [12].
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