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Abstract

Measuring the 3-dimensional shape and material appearance of physical objects is a

challenging task, but has a wide range of applications in areas including cultural heritage

preservation, architecture, law enforcement, industry, and entertainment. This thesis

extends existing research on acquisition pipelines to enable synchronous measurement

of shape and appearance. Previous work that measures each independently suffers from

errors due to the difficult alignment and merging problem. We overcome the difficulties of

synchronous acquisition by exploiting surface reflectance symmetries and a novel optical

design.

We demonstrate the first photometric approach for measuring the shape and appear-

ance of objects with anisotropic surface reflectance. For such materials, both the surface

normal as well as tangent direction at each surface point must be recovered, unlike in

the case of isotropic materials where the tangent direction can be ignored. We present

an optimization strategy to locate vectors of maximum reflectance symmetry using a

dense set of images taken under variable point lighting, resulting in a normal and tan-

gent vector recovered at each pixel along with a dense 2D slice of the surface reflectance

function.

We present an analysis of sinusoidal illumination in the context of shape and appear-

ance measurement, which shows how to simultaneously perform optical descattering,

recover 3D geometry, and acquire reflectance measurements from images taken under

phase-shifted sinusoidal lighting. In addition, we show that accurately measuring the

geometry of translucent objects using sinusoidal illumination is possible for a wide range

of materials and frequencies. These two theoretical results provide a basis for the design

of practical scanning systems.

Finally, a full pipeline for acquiring the shape and appearance of opaque objects

is presented. We combine sinusoidal illumination with a novel optical design to create



coaxial devices, which greatly simplify the joint measurement task compared to prior

work. Using the key result from our analysis of sinusoidal illumination and a novel

multiview stereo algorithm, we demonstrate the capture of complete 360◦ surface meshes

with spatially varying reflectance. Our evaluation compares the geometry obtained by

our system with state-of-the-art laser scans; the reflectance with traditional reference

gonioreflectometers; and the final model with reference photographs.
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Chapter 1

Introduction

The automated digitization of real-world objects offers a practical and more accurate al-

ternative to the tedious and difficult process of manual modeling. For example, accurate

digital representations of important statues, paintings, and artifacts give museums new

opportunities for analyzing, disseminating, and preserving these important artifacts.

Architects with access to digital models of building interiors can view photorealistic

images of proposed modifications. Scientific simulations and animations require highly

accurate depictions of real world objects and how they interact with their environment.

Computer vision tasks such as automated quality control and reverse engineering are

only enabled by accurate models of the geometry and materials in question. The enter-

tainment industry also has a great interest in digitizing physical objects to improve the

realism of movies and video games.

We show an approach for measuring high-resolution normal and tangent fields along

with the surface reflectance of objects. By acquiring many photographs of an object un-

der different controlled lighting conditions, and exploiting symmetries in the way light

reflects off object surfaces, we estimate shape in the form of a local surface orientation

at each pixel. This enables the measurement, rendering, and editing of anisotropic ma-
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Figure 1.1: A digital replica of a porcelain and stone bird statue, acquired using our
coaxial scanner system. (left) Photograph of the original object. (right) Rendering of
the digital model.

terials such as brushed metal and satin, which are asymmetric with respect to rotations

around the surface normal.

Sinusoidal illumination has been used successfully in many 3D scanning applications.

This illumination pattern also enables computationally separating the contribution of

single scattering from multiple scattering events such as subsurface scattering and inter-

reflections by assuming only direct reflections retain the high-frequency content of the

original sinusoid. We provide a detailed analysis of optical descattering using sinusoidal

illumination, which shows that the single scattering component is strongly affected by

the choice of sinusoid frequency as well as the geometric configuration of camera and

lightsource. Fortunately, this effect can be corrected for using our analysis, enabling

accurate joint measurement of 3D shape and surface reflectance. We also present an

extension of this analysis to the more complex case of translucent objects, which allow

light to scatter beneath the surface of the object. In this case, we investigate the rela-

tionship between material parameters and bias in the estimated surface geometry. Both

of these results have broad implications for image-based measurement systems, and give

insight into how such systems should be designed for different materials.

Finally, we introduce a full pipeline for joint measurement of opaque objects that
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results in complete 3D meshes with surface reflectance measurements over their surface

(see figure 1.1). This pipeline exploits a novel optical setup that utilizes two “coaxial

devices” – a camera and lightsource aligned to share a common optical axis and focal

point – with high-frequency sinusoidal lightsources. Our approach is enabled by a novel

multiview stereo algorithm as well as the previous analysis of optical descattering. We

compare both the recovered geometry and reflectance data against ground truth mea-

surements, and show rendered images of our final models that closely match reference

photographs.



Chapter 2

Background and Related Work

Systems designed to measure the of shape and appearance of physical objects draw on

knowledge from computer vision, radiometry, and reflectometry. This chapter reviews

the core concepts and related work from these areas.

2.1 Shape

The shape of many objects is well described by a 2D surface associated with the external

boundary of the object. Other objects such as pillars of smoke or inhomogeneous liquids

may require a 3D volumetric description, but will not be considered here. Each point on

a smooth surface also has an implicit surface normal that points perpendicular to the

local tangent plane as shown in figure 2.1.

The most common digital representation for a 2D surface is a triangle mesh, one

natural piece-wise linear discrete representation of a 2D manifold. Triangle meshes have

a long history in computer graphics, and current graphics hardware is heavily optimized

toward their use. One alternative is to consider a freeform point-cloud, such as seen in

figure 2.2, either with or without associated surface normals at each point. This repre-
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Figure 2.1: Surface normals represented in 2D and 3D.

sentation is disadvantaged by having less hardware rendering support; however, point

clouds are the output of many 3D scanning techniques as will be described in section 2.3.

Reducing a mesh to a point cloud is straightforward, and techniques also exist for con-

verting point clouds to meshes, such as the ball-pivoting algorithm [Bernardini et al.,

1999] or Poisson surface reconstruction [Kazhdan et al., 2006].

Figure 2.2: The 2D surface of a small statue represented with a connected triangle mesh
and with point samples.

2.2 Appearance

The appearance of an object is determined by how incoming light interacts with the

object to produce outgoing light. The amount of light traveling along a ray is measured
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by the radiance, L, W
srm2 . One approach is to ignore the underlying surface’s geometry

and view this interaction as a black box, known as the reflectance field [Debevec et al.,

2000]. The reflectance field is an 8-dimensional function defined as the ratio of incoming

radiance to outgoing radiance, for every possible incoming and outgoing ray of light. One

way to see that the reflectance field is 8-dimensional is to consider indexing all rays based

on their location on some bounding sphere that encloses the object. In this case each ray

is defined by its intersection with the sphere (2D) and its direction of travel (2D). We use

the notation R(xi, ωi, xo, ωo), indicating the points x and directions ω. The additional

dependence of this function on wavelength is usually ignored, and instead computations

are carried out independently in the red, green, and blue color channels. Defining

the appearance of an object independently from its geometry has the advantage of

disentangling the geometric complexity from the representation. Measurement systems

have been proposed for restricted slices of the reflectance field, such as considering fixed

lighting [Levoy and Hanrahan, 1996; Gortler et al., 1996] or distant lighting “non-local

reflectance fields” [Debevec et al., 2000].

In contrast, an accurate model of the surface geometry enables tasks such as ani-

mation, shape analysis, smoothing algorithms, collision detection, and so on. Repre-

senting appearance as reflectance at the surface also makes editing object appearance

easier, for example using 3D painting interfaces. Following nomenclature introduced by

Nicodemus [1977], the 4D bidirectional reflectance distribution function (BRDF) written

fr(ωi, ωo) defines the ratio of outgoing radiance along ωo to the irradiance ( W
m2 ) at a

surface point from ωi. The 6D spatially varying BRDF (SVBRDF), fr(x, ωi, ωo) defines

a BRDF at each point x on the surface. For non-opaque objects (such as figure 2.3)

in which light entering at a point xi might exit the surface at a different point xo, the

more general 8D bidirectional surface scattering reflectance distribution function (BSS-

RDF) is similar to the full reflectance field, but defined on the object’s surface, written
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S(xi, ωi, xo, ωo).

Figure 2.3: Example of an object rendered with an opaque BRDF (left), and a translu-
cent BSSRDF (right).

Surface scattering functions are traditionally defined relative to the local coordinate

system at the surface point x – the surface normal n and tangent direction t. For

isotropic BRDFs, which are symmetric under rotations around the surface normal, the

tangent direction can be left undefined. For this special case, the BRDF can be reduced

to a 3-dimensional function of (θi, θo, φi−φo) – see figure 2.5. In chapter 3 we explore the

importance of anisotropic BRDFs and describe an approach for jointly measuring these

functions along with their local coordinate system using photographs under controlled

lighting.
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Figure 2.4: Notation used for defining the bidirectional surface scattering reflectance
distribution function (BSSRDF), S(xi, ωi, xo, ωo).

Figure 2.5: Isotropic BRDFs can be reduced to 3-dimendional functions of (θi, θo, φi−φo).



9

2.3 Shape Acquisition

Methods for estimating the 3D geometry of objects can be broadly classified as active

or passive, based on whether they introduce energy into the scene (laser, light, sound,

physical contact, etc.) to help acquire shape. Passive techniques include classic stereo

triangulation [Marr and Poggio, 1976], shape from motion [Tomasi and Kanade, 1992],

shape from shading [Horn, 1975], and many extensions. Passive techniques often per-

form poorly compared to their active counterparts, because most cues for shape can be

ambiguous in natural settings, especially in textureless regions. We instead focus on

active techniques.

A variety of active techniques are available, such as those in figure 2.6. Touch probes

are the standard tool for industrial inspection as they achieve measurement accuracies

exceeding 25 micrometers and are virtually noise free. Unfortunately, touch probes

can only take several measurements per second due to the mechanical readjustment

required, making them impractical for acquiring densely sampled geometry. In addi-

tion, making physical contact with the object is often undesirable, especially in law

enforcement or cultural heritage applications. Volumetric techniques such as computer

tomography (CT) and magnetic-resonance imaging (MRI) offer another method for ac-

quiring geometry, but place restrictions on the materials that can be scanned (non-

metallic) and are very expensive. Time of flight systems record the length of time a

signal takes to reach and return from the object being scanned. Time of flight laser

scanners in particular have grown in speed and accuracy with recent models able to

achieve submillimeter accuracy at distances up to 10 meters [Boehler et al., 2003]. The

primary disadvantage of such systems is their bulkiness, which makes them difficult

to reposition accurately and automatically. Such scanners have difficulty with shiny

objects that reflect most of the signal away from the detector. Triangulation based
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systems include structured light scanners that required calibrated lighting[Valkenburg

and McIvor, 1998], as well as special cases of spacetime stereo [Zhang et al., 2003;

Davis et al., 2005] such as commonly used laser/light stripe scanners and simple uncal-

ibrated projector time-coding. The appearance of objects is most naturally measured

using cameras, and thus image-based approaches are desirable for the joint measurement

of shape and appearance. In addition to simplifying system design by requiring no extra

parts, it also reduces calibration requirements and avoids the difficult process of merging

data from different sensors.

Figure 2.6: A variety of scanning technologies. (left) Touch probe. (center) Time of
flight laser scanner. (right) Magnetic resonance imaging machine.

In addition to measuring shape directly as 3D geometry in the scene, photometric

techniques exist that recover surface normals by observing a fixed scene under different

lighting conditions. Classical photometric stereo [Woodham, 1980] estimates the surface

normal and albedo of a perfectly diffuse (Lambertian) object as seen from each pixel in a

fixed view using three or more input images under varying point lighting. Although real-

world materials are never perfectly diffuse, the simplicity and stability of the resulting

linear optimization are undeniable, and this simple technique can be made more robust

using outlier rejection to reduce the effects of highlights (see figure 2.7). Additionally,
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color-based analysis [Mallick et al., 2005] and/or intensity-based analysis [Coleman and

Jain, 1982] can be used to isolate the diffuse component of materials with more complex

reflectance provided that a significant diffuse component exists.

Numerous improvements to this basic idea have been proposed, most of which ex-

tend photometric stereo to non-Lambertian materials by fitting measurements to low-

dimensional BRDF models while simultaneously estimating surface normals. Tagare

et al. [1991] extended the Lambertian case to a simple multi-lobe reflectance model.

Georghiades [2003] estimates surface orientation and reflectance (as well as light source

positions) by assuming the surface reflectance function can be represented by a simpli-

fied Torrance-Sparrow BRDF [Torrance and Sparrow, 1967] with a constant specular

component over the surface. Goldman et al. [2005] allow more variation over the sur-

face by simultaneously estimating a set of basis materials modeled as isotropic Ward

BRDFs [1992]. A similar method was recently proposed by Chung et al. [2008] which

focuses on materials with wide specular lobes. The disadvantage of fitting data to para-

metric models is that it can be difficult to predict when materials deviate from these

models, and the resulting errors in the final surface normals are difficult to characterize.

A few techniques avoid relying on parametric models. Hertzmann and Seitz [2003]

use homogeneous reference objects of known shape in the scene and model the surface

as a spatially-varying mixture of these known basis materials. Unfortunately, reference

objects are not practical to create for many scenes and materials. Another example is the

work of Alldrin et al. [2008], which represents isotropic reflectance using a linear basis of

general non-paramateric bivariate functions. Although such an approach holds promise,

jointly estimating the surface BRDFs and surface normals leads to a fragile and expensive

optimization that must integrate reflectance data across the entire object. A key benefit

of the approach we present in chapter 3 is that it processes each pixel independently and

does so without imposing any particular analytic model on the data.
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Figure 2.7: Example of a normal field (bottom) computed from a set of input images
under varying point lighting (top) using a robust variant of photometric stereo [Wu et
al., 2010]. We use this type of RGB visualization for normal fields throughout this thesis.

Similar to our approach are methods that exploit symmetries in real-world BRDFs.

Zickler et al. [2002] exploit Helmholtz reciprocity by capturing pairs of images in which

the position of the camera and light source are interchanged. This enables the recovery

of both depth and surface normals independent of reflectance but requires finding corre-

sponding points in images taken from different viewpoints. In contrast, our single-view

approach permits a simpler acquisition and allows the direct recovery of surface normals

at the resolution of the camera. Isotropy is another form of symmetry that has been

exploited for photometric stereo by Alldrin and Kriegman [2007]. For isotropic BRDFs,

they show that one component of the surface normal can be recovered by exploiting the

reflective symmetry across the view-normal plane. In contrast, the symmetries we con-

sider apply to both isotropic and anisotropic materials and allow measuring the complete

surface normal and tangent directions.
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2.3.1 Appearance Acquisition

The BRDFs of specific materials were traditionally acquired using a gonioreflectometer

– large expensive devices designed to take measurements from a sample of the material

at individual view and light directions. Dense angular measurements are impractical

with this design, however high-accuracy measurements are available at sparse sample

points for many materials [Touloukian, 1970].

Image-based techniques for measuring view and light dependent reflectance have

flourished with the increased availability of high resolution digital cameras. Many de-

signs have been proposed that use the high spatial resolution of camera CCDs to densely

sample the angular domain of the BRDF. Ward proposed one of the earliest such de-

signs, using a half-mirrored dome to measure the outgoing light field around a small

planar patch of homogeneous material in a single exposure [1992]. Dana [2001] pro-

posed a design utilizing a parabolic mirror, which only requires the lightsource to move

in a plane. Many devices require sample objects of cylindrical or spherical geometry

with homogeneous material to allow sampling an isotropic BRDF from a fixed camera

position (see figure 2.8) [Marschner et al., 2000; Matusik et al., 2003]. The design of

Marschner et al. [1999] also assume a homogeneous isotropic BRDF, but use a range

scanner to acquire object geometry and align reflectance measurements using fiducials in

the room, attached to the sample, and on the lightsource. Ngan et al. [2005] wrap strips

of anisotropic material at different orientations around a cylinder to allow dense sam-

pling in the angular domain and coarse sampling of rotations around the surface normal.

Dana et al. [1999] have defined and acquired the bidirectional texture function (BTF), a

non-local reflectance field defined over a small patch near the surface. Their measure-

ments can be averaged spatially to estimate BRDF measurements of the surface if viewed

from a distance. They use a robotic arm to automatically position a planar sample at

different orientations, which allows them to leave the lightsource fixed and reposition
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only the camera several times. Han and Perlin [2003] take similar measurements more

quickly using a kaleidoscope instead of moving the camera and lightsource. McAllis-

ter [2002] uses a robotic arm to position planar samples, but measures the SVBRDF

by holding the camera fixed and mechanically moving the lightsource. Marschner et

al. [2005] estimate the parameters to a scattering model of finished wood using pla-

nar samples. They use a computer-controlled spherical gantry to accurately position a

camera and lightsource on a sphere surrounding the object. This substantially reduces

the amount of manual positioning required and makes a much denser sampling of the

scene possible. Zickler et al. [2005] assume known geometry and estimate the SVBRDF

with a small number of images by assuming the BRDF varies smoothly over the surface.

Peers et. al [2006] estimate the heterogeneous BSSRDF of planar samples from a fixed

view and light direction (ignoring directional dependency). Ghosh et al. [2007] recently

demonstrated an acquisition device for isotropic materials that reduces capture time by

requiring no moving parts, and take measurements of a planar sample directly under

zonal basis lighting. Romeiro and Zickler [2010] simultaneously estimate unknown re-

flectance and lighting from a single image of an object with known shape using a prior

on the statistics of real-world lighting environments. The BRDF is represented in a 2D

bivariate domain [Romeiro et al., 2008]. See the survey paper by Weyrich et. al [2007]

for more details on measurement systems for surface scattering functions.

2.3.2 Joint Acquisition of Shape and Appearance

Fewer systems have been designed to measure the spatially varying reflectance of objects

with complex geometry. Sato et al. [1997] acquire geometry using a light-stripe scanner

and take sparse reflectance measurements with the same video camera. The main dis-

advantage of this setup is that stripe based scanners must take many images per scan,

which results in either long acquisition times or, in the case of a video camera, very noisy
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Figure 2.8: Three systems for measuring surface reflectance. (left,center) A cam-
era photographs spherical samples under varying point lighting [Matusik et al. 2003;
Marschner et al. 2000]. (right) A dome of lights accelerates the process by removing
moving parts from the system [Gu et al. 2006]

low-quality images. Lensch et al. [2003a] manually adjust cameras and light sources and

use chrome spheres to calibrate the lightsource relative to the camera. 3D geometry is

acquired with a CT scan and is aligned to each image taken under point lighting using

silhouette matching. Aside from the shortcomings of a silhouette matching technique,

slight camera miscalibration inevitably results in misalignment between images and ge-

ometry. This results in misprojected reflectance measurements, especially near depth

discontinuities. To alleviate these problems, discontinuities are detected explicitly and

adjacent samples are discarded. Goesele et al. [2004] propose a design for measuring

translucent objects, but must coat the objects with diffuse powder before acquiring ge-

ometry with a laser scanner. They use the same silhouette matching algorithm to register

the resulting 3D model to 2D images. Goldman et al. [2005] avoid explicitly recovering

the geometry and instead compute per-pixel normals by fitting reflectance measurements

to a linear combination of Ward model BRDFs. Their setup requires calibrating each

new light position using a chrome sphere to estimate the lightsource direction and a

diffuse sphere to estimate intensity. Alldrin et al. [2008] take a similar approach, but

assume a bivariate isotropic BRDF instead of fitting to the Ward model. Unfortunately,

integrating normals to recover an explicit surface is prone to low-frequency bias and

is only applicable to objects with no depth discontinuities. Muller et al. [2005] use an
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elaborate 151-camera dome to quickly measure many view and light combinations. De-

spite the efficiency of their design, geometry is acquired using a convex-hull algorithm

and results are only shown for a nearly spherical object. Weyrich et al. [2006] have in-

troduced a larger dome with the goal of measuring spatially-varying surface reflectance

and subsurface scattering parameters of human faces. They acquire geometry with a

commercial structured light scanner. This reintroduces the misprojection problems from

Lensch et al., but is less noticeable in the case of human faces that have smoothly vary-

ing reflectance properties. In chapter 5 we present a new optical device and algorithms

for synchronous measurement of shape and appearance that overcome these limitations.



Chapter 3

A Photometric Approach for

Estimating Normals and Tangents

First presented in Holroyd et al. [2008] at SIGGRAPH Asia 2008.

Photometric stereo uses images of a scene under different lighting conditions to

infer information about the surface orientation and reflectance. As discussed in sec-

tion 2.3, prior work on photometric stereo has largely relied on strong assumptions

about the observed surface reflectance, such as requiring it to obey a certain ana-

lytic function [Woodham, 1980; Tagare and DeFigueiredo, 1991; Georghiades, 2003;

Goldman et al., 2005] or be isotropic [Alldrin et al., 2008]. Anisotropic BRDFs are those

with a preferred scattering direction around the surface normal, in contrast to isotropic

BRDFs which are rotationally symmetric (see figure 3.1). Common anisotropic materials

include brushed metal, satin, grass, wood, hair, and velvet. Previously, no photomet-

ric technique has been designed to measure both the surface normal as well as tangent

directions of anisotropic materials.

We present a new photometric technique that overcomes these limitations. As with

existing approaches, the input to our algorithm consists of a sequence of images taken
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under varying point lighting, and the output includes an estimate of the surface normal

for each pixel in a reference view. Unlike previous techniques, however, our approach

does not require estimating a model of the surface reflectance, and it performs well

for diffuse, glossy, shiny, metallic, dielectric, isotropic, anisotropic, homogeneous and

spatially-varying surfaces.

Our basic strategy is to identify symmetries in the 2D slice of the BRDF obtained by

fixing the local view direction. In particular, we consider the reflective symmetry of the

halfway vector (the bisector of the local view and light directions) across the normal-

tangent and normal-binormal planes. Although these symmetries are not required to be

satisfied for all physically-valid BRDFs, we show that when light positions are properly

restricted during acquisition, one can reliably estimate normals for a wide range of

BRDFs by localizing their planes of symmetry.

In addition to providing a means for recovering surface normals, our symmetry-based

approach has the important advantage of delivering per-pixel tangent vectors as well.

For anisotropic surfaces, the tangent field rivals the normal field in its importance for

reflectometry and rendering, but to date, its recovery has received very little attention.

This chapter presents empirical data for analytic and measured BRDFs demonstrat-

ing that our approach produces normals and tangents that are accurate to within a few

degrees. We also show normal and tangent fields measured from real-world objects and

demonstrate appearance editing applications.

3.1 Theoretical Framework

The goal of this work is to estimate per-pixel normal and tangent vectors (n, t) from a

sequence of images recorded at different light positions. For a fixed view vector v, let

βv(θh, φh) denote the 2D slice of the BRDF sampled at each pixel, parameterized by the
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Figure 3.1: (left) An isotropic metallic BRDF, next to an anisotropic BRDF of brushed
metal. (right) A plane rendered using measured anisotropic brushed aluminium and a
procedurally generated tangent field. The BRDF is constant over the plane, only the
tangent direction is changing.

elevation and azimuthal angles of the halfway vector expressed in the local coordinate

system defined by (n, t). As illustrated in Figure 3.2, we explore the following symmetries

in these functions:

• Reflection of the halfway vector across the nt plane:

βv(θh, φh) = βv(θh,−φh)

• Reflection of the halfway vector across the nb plane:

βv(θh, φh) = βv(θh,−φh + π)

• Together, these two symmetries imply reflection across the surface normal:

βv(θh, φh) = βv(θh, φh + π)

These symmetries are different from those typically associated with BRDFs such as

isotropy, which implies rotation of the light and view around the surface normal; we are

considering BRDF values at light/view positions corresponding to reflections of their

associated halfway vectors. Although such symmetries are not necessary for a physically

valid BRDF, we will show that they are present for a wide range of materials and under

certain light/view configurations.

Although many simple analytic BRDFs (e.g. Blinn-Phong [1977]) exhibit these sym-

metries perfectly, it is more informative to consider physically-based models that apply
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Figure 3.2: Orthographic projection of the hemisphere surrounding the surface normal
n annotated with the tangent t and binormal b along with the three types of symmetry
explored in this paper. For a fixed view v, we expect the value of the BRDF at light
position l to be equal to that at light positions corresponding to reflections of the halfway
vector h across the nt plane, the nb plane, and the surface normal.

to a much wider class of materials. In particular, microfacet models treat the surface as

a collection of microscopic Fresnel mirrors and have been shown to accurately represent

a wide variety of both isotropic and anisotropic materials [Cook and Torrance, 1981;

Ashikhmin et al., 2000; Ngan et al., 2005]. The specular component of a microfacet-

based BRDF has the form [Torrance and Sparrow, 1967; Ashikhmin et al., 2000]

fr(v, l) ∝ p(h)F (l · h)
S(v, l,h)

(v · n)(l · n)
, (3.1)

where p(h) captures the distribution of microfacet orientations, F is the Fresnel term,

and S(v, l,h) models shadowing and masking effects at the micro scale. The distribu-

tion p(h) is commonly modeled with an analytic function such as an elliptical Gaus-

sian [Ward, 1992] or the Beckmann distribution [Cook and Torrance, 1981]. Alterna-
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tively, Ngan et al. [2005] have shown that it can be fit to measured data using Ashikhmin

et al.’s [2000] approximation to Equation 3.1.

In the context of the symmetries described above, one can make two observations re-

garding the microfacet model: 1) the distribution term p(h) has a dominating influence

on appearance for a broad range of view and light directions; and 2) it generally exhibits

the symmetries that we seek to exploit. The latter observation comes from existing ana-

lytical and measured distributions, almost all of which satisfy the symmetry conditions.

While exceptions do exist (see Section 3.4), we assume they are rare. The first observa-

tion is based on both physical and empirical evidence. Empirically, while the right-most

term in Equation 3.1 can be quite complex, it is typically smooth and can be simpli-

fied tremendously without significant loss of visual accuracy [Ashikhmin et al., 2000;

Ngan et al., 2005]. The other term to consider—the Fresnel term—is approximately

proportional to (1 − (l · h))5 [Schlick, 1994], and is substantial only at grazing angles.

By restricting the set of light positions to a limited cone of directions about the view

vector, the influence of this term can be made small as well.

In the following, we present an acquisition system that samples the BRDF inside

the cone of light directions for which cos−1(l · h) < θdmax (the notation θd is due to

Rusinkiewicz [1998]; it refers to the elevation angle of the difference vector). Since θd

depends only on the light and view directions, this bound can be achieved by simply

restricting the light source positions during acquisition without any prior knowledge

of the surface normal. By bounding the light directions in this way, we ensure the

dominance of the microfacet distribution. Our results show that it is then possible to

robustly identify the planes of reflective symmetry from the partial slice of the BRDF

for a wide range of surface orientations.
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3.1.1 A Measure of BRDF Symmetry

In this section, we define a precise measure of the symmetry previously discussed. For

a fixed view, let l and l′ be two light positions with corresponding halfway vectors at

symmetric positions across some plane. The measured intensities at these positions will

be Il ∝ fr(v, l)(n · l) and Il′ ∝ fr(v, l
′)(n · l′). We ignore the intensity of the light

which is the same in all measurements and therefore does not affect our analysis. Note

that even if the BRDF is equal at these positions, the product of the BRDF and the

cosine term need not be. This can easily be corrected by cross-multiplying the cosine

terms. In other words, if the BRDF is indeed symmetric across the chosen plane then

(n · l′)Il = (n · l)Il′ .

Now let τ(l) be an arbitrary transformation on lighting positions. For some hypoth-

esized normal n and tangent t, we define the symmetry distance of the BRDF under this

transformation as:

SDτ (n, t) =

∫
Ωτ
||(n · τ(l))Il − (n · l)Iτ(l)||2 dωl∫

Ωτ
||(n · τ(l))Il||2 dωl

,

where the domain of integration Ωτ is constrained to include only light positions l and

τ(l) that lie in the upper hemisphere with respect to n and correspond to halfway

vectors between 0 and θdmax . As shown in Figure 3.2, we define τnt(l) to reflect the

halfway vector associated with l across the nt plane, τnb(l) to reflect the halfway vector

across the nb plane, and τn to reflect the halfway vector across the normal. Note also

that the transformation τn is independent of the chosen tangent direction. Finally, we

define a combined symmetry measure as

SD(n, t) = SDτnt(n, t) + SDτnb(n, t) + SDτn(n). (3.2)
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Figure 3.3: Integration regions for the three different transformations we consider shown
over halfway vectors. These are defined as the intersection of the sets of halfway vectors
for which (n · l) > 0 and (n · l′) > 0 that also have cos−1(v ·h) within θdmax . These regions
can form complex shapes and can even become empty for normals that lie beyond θdmax .

When n and t coincide with the true surface frame, we expect SD to be minimized.

As illustrated in Figure 3.3, the integration regions Ωnt, Ωnb and Ωn typically form

complex shapes and are even empty for certain combinations of n, t, and θdmax . There-

fore, care must be taken when evaluating these integrals as discussed in the following

section.

3.1.2 Validation

We performed numerous simulations designed to verify our key assumption that the

symmetry distance is minimized at the correct surface frame and to evaluate the effect of

θdmax . This was done using a standard Monte Carlo algorithm to estimate Equation 3.2

at a dense set of normal and tangent vectors. We compared the point of maximum

symmetry to the correct surface frame for a number of analytic and measured BRDFs

and for different values of θdmax and surface orientations.

We first considered anisotropic materials using the elliptical Gaussian Ward model [Ward,

1992] along with three of the measured anisotropic samples acquired by Ngan et al. [2005].
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For the measured data, we followed their reported procedure

for fitting the tabulated microfacet distribution, Fresnel pa-

rameter, and shadowing and masking terms of the Ashikhmin

model [2000], and these fits were used for our experiments. For

our simulations, we fixed the view vector to be the z-axis, chose

a normal vector within the zx plane, and fixed the tangent at

an angle φt = 25◦ off this plane. We estimated the normal and

tangent vectors that minimize Equation 3.2 and compared these to the correct surface

frame.

Figure 3.4 reports the errors in these estimates for each material over a range of values

of θdmax (varying along the columns in each false-color error visualization) and a range of

surface orientations (varying along the rows). These visualizations show two important

trends. First, our ability to identify the correct normal and tangent diminishes as θdmax

diminishes. For very restrictive sets of light positions, most candidate normals result in

a very small region of integration (see Figure 3.3), making it difficult to reliably identify

the minimum. Therefore, we disregard estimates at pixels where we identify any of these

domains to be empty. This limits the range of recovered normals to those less than θdmax

since Ωn is always empty beyond this point.

The second important trend is that the accuracy of our approach steadily increases as

θdmax reaches around 70◦ degrees and then falls off for larger values. We attribute this to

the presence of Fresnel effects and the influence of shadowing and masking components

in these regions of the BRDF as previously discussed. Based on this analysis, we chose

θdmax = 65◦ as the “sweet spot” (indicated by the white boundary in Figure 3.4) and

used this for all the datasets we captured. Note that for these materials our approach

typically identified the correct normal and tangent to within a single degree and only

at extreme orientations did we observe errors of up to four degrees. These results are
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Figure 3.4: Error analysis using the Ward anisotropic BRDF and three measured sam-
ples [Ngan et al., 2005]. The errors in the estimated normal and tangent vectors are
reported in degrees over a range of reflectance angles θn (the angle formed by the
view and normal) which vary across the rows and values of θdmax which vary across
the columns. The materials include (a) an elliptical Ward with parameters kd = 0.5,
ks = 0.5, αx = 0.1, and αy = 0.5.; (b) measured purple satin; (c) measured yellow satin;
and (d) measured brushed aluminum.
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Figure 3.5: Average error computed for Lambertian photometric stereo with outlier
rejection, our approach, and a method that associates the direction of maximum re-
flectance with the normal for different materials ranging from perfectly diffuse to dark
and shiny modeled with the Torrance-Sparrow BRDF [1967].

representative of those we observed at different tangent vectors and we chose to present

those for φt = 25◦ only for the sake of clarity.

We also experimented with isotropic materials using the Torrance-Sparrow BRDF [Tor-

rance and Sparrow, 1967] with parameters ranging from perfectly diffuse to dark and

shiny. The results are shown in Figure 3.5, where the average error was computed over

normal orientations ranging from 0◦ to 60◦ and for θdmax = 65◦ (recall that the value of

θdmax places a restriction on the range of normals that our method can reliably estimate).

As a baseline comparison, we also report the average error for Lambertian photometric

stereo [Woodham, 1980] and specularity stereo [Wang and Dana, 2006; Chen et al., 2006;

Ma et al., 2007; Francken et al., 2008], which assumes the maximum reflectance occurs

when the halfway vector is coincident to the normal. We applied photometric stereo

to a simulated dataset consisting of 90× 90 light positions sampled uniformly over the

sphere and rejected data greater than two standard deviations away from the mean in

order to remove areas in shadow or highlight. For the specularity method, we found the

maximum of the product of the BRDF and cosine term using a non-linear search; this

gives an upper-bound on the performance of these techniques since the angular sampling
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rate of any practical acquisition device would further reduce accuracy. For all parameter

values, our method performs well, and the surface normal is recovered to within a few

degrees. Better performance is achieved for very specular surfaces, in which case the

distribution term clearly dominates, and for very diffuse surfaces, in which case the (n ·l)

terms cancel out only at the correct surface frame. While traditional photometric stereo

and specularity-based methods perform well for diffuse and shiny materials respectively,

our approach performs well in both cases. We found these trends and absolute errors to

be consistent with other analytic models including Cook-Torrance [1981], Ward [1992],

and He-Torrance-Sillion-Greenberg [1991].

3.2 Implementation

Our acquisition setup consists of a QImaging Retiga 4000R digital camera and a tungsten-

halogen lightsource mounted to a computer-controlled spherical gantry [Levoy and Cur-

less, 2002]. We assume distant lighting and an orthographic camera model. Note that a

less precisely calibrated system would be possible if used in conjunction with methods for

estimating the position of a hand-held light source, including free-form capture [Masselus

et al., 2002; Chen et al., 2006; Toler-Franklin et al., 2007].

At each pixel in the reference view we reconstruct the BRDF slice βv(θh, φh) using

spherical barycentric interpolation over the measurements. As a pre-process, we compute

the Delaunay triangulation [Shewchuk, 1996] of the halfway vectors corresponding to

measurement locations projected onto the unit disc. Figure 3.6 (middle) visualizes the

reconstructed BRDF slices at a single pixel in two anisotropic datasets. These slices are

functions defined over the hemisphere shown here using a parabolic projection [Heidrich

and Seidel, 1999] onto the plane.

In practice, the accuracy of this reconstruction is dependent on the frequency content
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Figure 3.6: Typical reconstructions of the BRDF slice shown for two anisotropic datasets
along with a visualization of the symmetry distance at a dense set of normal vectors.
The BRDF slices and the symmetry values are functions defined over the hemisphere
which are shown here using a parabolic projection onto the plane. Symmetry distances
are normalized to occupy the range [0, 100].

of the underlying BRDF, the density and pattern of light source positions, and the

interpolation method. Each of the four datasets we acquired consists of approximately

1, 500 high dynamic range images recorded at light positions sampled uniformly over

the cone of directions surrounding the view for which θd < 65◦. This acquisition process

requires approximately 45 minutes. The impact of lower sampling densities is examined

in section 3.4.

Given βv(θh, φh), we compute the normal and tangent vectors in two steps. First, we

find the normal vector that minimizes SDτn . Recall that this distance is independent of

the choice of tangent direction even for anisotropic materials. This involves performing

a non-linear optimization over a 2D domain for which we use the Nelder-Mead simplex

algorithm [1965]. We initialize this search at the direction where we observed the max-

imum reflectance. Figure 3.6 (right) visualizes our estimate of SDτn over a dense range

of possible normal directions. The distance at each candidate normal n is computed
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as a discrete sum over the sampled light positions. For each light position, we reflect

its halfway vector across n and evaluate our reconstructed βv(θh, φh) at that position.

Reflected positions that fall outside Ωn are discounted. In cases where all of the light

positions are reflected to areas without data, we assign an arbitrarily large error value

(visible as the constant red area along the boundary in Figure 3.6). These visualizations

clearly illustrate the stability of our optimization; the correct minimum is clearly defined

and the error space is largely free of poor local minima. These properties result in a

robust search that converges quickly, requiring only 60 evaluations of the error function

on average.

In the second step, we hold the normal vector fixed and search for the tangent vector

that minimizes SDτnt + SDτnb . Again, we use the Nelder-Mead algorithm to perform

this 1D search. Because there exists a natural ambiguity between the binormal and

tangent, we use a simple heuristic that assigns the tangent to the direction along which

the specular highlight is widest.

We also found it was important to assign a confidence to each pixel based on the resid-

ual error and the magnitude of the denominator in Equation 3.2 at the computed frame.

We consistently observed low confidence values in areas where the normal either lies

beyond 60◦ from the view or where the reflectance data is corrupted by interreflections

or cast shadows. We cull any estimate whose confidence is below a user-set threshold,

which is determined manually for each dataset. Since each pixel may be processed in-

dependently, we distributed this optimization over a cluster of forty-two machines with

Dual 1.6 GHz Opteron252 CPUs and 2GB of memory. Each dataset consists of 1, 500

images with 1024× 1024 resolution which consume 2.3 GB of disk space. The optimiza-

tion required approximately 10 minutes to complete or the equivalent of 7 hours on a

single machine.
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3.3 Results

Figure 3.7 shows the normal fields we estimated for two isotropic datasets. The first

dataset is of a vase with an intricate spatially-varying design and a shiny surface finish.

The second is of a small wooden figurine in the shape of a frog also with a spatially-

varying appearance, but a more matte finish. We have masked out regions with confi-

dence values below our chosen threshold (shown as a dotted line in the reference image).

The few errors we observe are primarily caused by scene interreflections (e.g., near the

top of the vase in Figure 3.7). Despite these errors, our algorithm is able to capture

the overall shape of these objects even though they exhibit drastically different surface

reflectance. Furthermore, our technique recovers fine geometric details such as the em-

bossed pattern along the vase’s surface and small indentations in the frog as seen in the

cutouts.

Figure 3.8 shows normal and tangent fields computed from two objects with anisotropic

reflectance. The first dataset is of the top of a french press coffeemaker made from alu-

minum brushed in a circular pattern. The second dataset is a bronze vase which has

been brushed in a constant direction around its axis of symmetry. The tangent fields

computed with our algorithm correctly capture these patterns, although there are re-

gions where the material is not brushed and therefore the tangent direction is undefined

(e.g., near the ridges in the middle of the vase). Additionally, errors in the normals often

lead to errors in the tangents as seen near the bottom of the bronze vase.

3.3.1 Application: Appearance Editing

Our method provides separate estimates of the 3D shape of an object and its surface

reflectance due to synchronous acquisition, allowing for independent manipulation of

either component. Figure 3.9 shows an example in which the surface reflectance is
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Figure 3.7: Normals computed from two objects with complex spatially-varying isotropic
reflectance. Normals are visualized according to (r, g, b) = (nx+1

2
, ny+1

2
, nz). The dashed

line in each reference image indicates the region shown at right.
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Reference Image Normal Field Tangent Field

Figure 3.8: Normals and tangents computed from two objects with complex anisotropic
reflectance. Tangent directions are visualized according to (h, s, v) = (2φ, 1, 1) where
the angle φ is defined with respect to the x-axis.
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edited to enhance surface gloss. In this example, we enable control over the reflectance by

independently fitting an analytic Ward BRDF to the reflectance measurements available

at each surface position. A comparison of this fit to a reference image suggests that the

Ward model provides a reasonable description of this surface’s reflectance, at least for

this particular slice of the BRDF domain. The right of this figure shows an editing

example in which we have scaled the specular and diffuse components at each pixel to

give the finish a glossier appearance.

Since we use a parametric BRDF model for editing, this approach is conceptually

similar to what could be achieved using the method of Goldman et al. [2005]. An

important difference, however, is that our approach recovers geometry in a manner that

is separate from reflectance. This provides the ability to choose editing tools that are

most appropriate for the reflectance of a particular object. These tools can be based on

a parametric model appropriate to the object—as we have demonstrated here—or on

data-driven representations similar to those described by Lawrence et al. [2006].

It is also possible to manipulate the underlying normal and tangent fields of a surface

while keeping the original reflectance intact. Figure 3.10 shows a relighting result that

uses an edited version of the bronze vase’s tangent field to display the SIGGRAPH logo.

This edit was accomplished by rotating each tangent vector within the edited region by

90◦ about its corresponding surface normal; Fisher et al. [2007] have recently introduced

tools that enable more sophisticated manipulations of tangent fields.

3.4 Discussion

While we have shown that our strategy of associating planes of symmetry in the BRDF

with the correct surface frame is valid for many different materials, we did observe

cases where this approach fails. A good example is the red velvet sample acquired by
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Reference Image Ward Fits Edited Fits

Figure 3.9: Edited surface reflectance combined with measured geometry. Left: original
HDR image not included in training set. Middle: reconstruction from fits of the Ward
BRDF model computed at each pixel. Right: result of editing the specular component
to give the surface a glossier appearance.

Original Edited Tangents

Figure 3.10: Edited tangent field combined with measured reflectance. Left: original
HDR image not included in training set. Right: image generated by editing the tangent
field to display the SIGGRAPH logo.

Ngan et al. [2005]. The deduced microfacet distribution does not exhibit the expected

symmetries and we calculated that our technique would produce errors of up to ten de-

grees. Intuitively, materials with microgeometries symmetric around the surface normal

(grooves in brushed metal, threads in satin) satisfy our underlying assumption, whereas

materials with asymmetric microgeometries such as velvet (composed of tiny cylinders

systematically brushed to a fixed angle off the normal) do not. Retroreflective materials

would also present challenges for our approach. These BRDFs exhibit backscattering
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lobes that are substantial when the light and view directions are close to one another.

However, we expect it would be possible to handle these cases by placing a lower-bound

on θdmax during acquisition to avoid sampling these regions.

Accurately identifying the planes of symmetry in βv(θh, φh) depends strongly on our

ability to reconstruct this function from our sampled data. Figure 3.11 shows the effect

on the resulting normal field of using a decreasing number of light source positions. As

expected, with fewer source positions the quality of these reconstructions decrease and

the resulting normal field exhibits a faceted appearance as the optimization more often

returns a poor local minimum. Using a more sophisticated interpolation technique such

as radial basis functions could result in better reconstructions, and is an interesting

direction of future work.

1,512 743 380 172

Figure 3.11: Normal maps of a porcelain vase computed using different numbers of
light positions. The images along the bottom visualize the source positions showing the
corresponding half-way vector projected onto the x-y plane of a view-centered coordinate
system.

Another limitation of our technique is that it does not account for scene interreflec-
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tions or subsurface scattering. Figure 3.12 visualizes the normal and tangent map of

a silk necktie computed using our approach. Note that this scene exhibits strong dis-

continuities in the tangent field and many depth boundaries. The majority of errors

are caused by interreflections which occur near the overlapping regions. Future research

might consider combining our approach with techniques for isolating light that is di-

rectly scattered from the object surface such as that presented by Nayar et al. [2006].

We should also note that in some places our heuristic for choosing between the tangent

and the binormal is unreliable (e.g., the abrupt blue-to-yellow transition in the tangent

map visualization in the bullseye pattern near the bottom left). This is due to the fact

that the highlights for this material are relatively wide and sparsely sampled near graz-

ing angles. Despite these few inconsistencies, however, the majority of this challenging

scene is accurately captured by our method.

It is also worth emphasizing that there are a number of other photometric stereo

methods that could be used in conjunction with our approach. For example, in the

isotropic case, symmetries along intensity profiles from view-centered circles of light

directions provide an additional constraint on the surface normal [Alldrin and Kriegman,

2007]. Rather than explore the benefits of combining complimentary approaches with

our symmetry-based technique, we instead explored what can be recovered using these

symmetries alone. This allows us to consider isotropic, anisotropic, diffuse, specular and

hybrid surfaces in a unified manner.

Finally, there are many applications for which partial and even imprecise surface

geometry is sufficient, such as the applications described in Section 3.3. We believe that

the simplicity of the acquisition required for our technique along with its applicability

to a wide range of materials will have broad applicability in similar systems.
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Reference Image Normal Field Tangent Field

Figure 3.12: A folded necktie with complex reflectance, depth boundaries and disconti-
nuities in the tangent field presents a particularly challenging case.

3.5 Conclusion

This chapter described a new photometric approach for estimating the surface normals

and, for anisotropic materials, the tangent vectors over an object’s surface as seen from a

fixed viewpoint. The input to our algorithm is a set of images taken under varying point

lighting constrained to lie within a cone of directions centered at the view. We show that

the size of this cone can be chosen to allow reliable detection of the planes of reflective

symmetry in the microfacet distribution of the measured BRDF. We demonstrated an

optimization that computes the surface frame at each pixel by identifying these planes

of symmetry and showed that our approach is accurate to within a few degrees over a

range of analytic and measured BRDF data. Finally, we presented normal and tangent

fields computed with our technique from four real-world objects that encompassed a

range of complex isotropic, anisotropic, and spatially-varying reflectance.



Chapter 4

Sinusoidal Illumination for Shape

and Appearance Measurement

First presented in Holroyd et al. [2010a; 2010b] at SIGGRAPH 2010, and Holroyd and

Lawrence [2011] at CVPR 2011.

Sinusoidal illumination is used as an active lighting pattern for recovering geometry

in active stereo triangulation systems. In contrast to discrete patterns such as binary

stripes, the continuous nature of sinusoidal patterns allows for subpixel precision when

recovering geometry. More recently, it was discovered that high-frequency illumination

patterns can be used for optical descattering, which computationally separates local

surface reflections that retain the high-frequency pattern from diffuse interreflections and

subsurface-scattering that do not. Nayar et. al [2006] observed that a high-frequency

sinusoid could be used to simultaneously perform optical descattering while recovering

3D geometry. The advantage of this approach is that it removes interreflections, which

are traditionally difficult to detect and can create produce errors during triangulation.

In this chapter we show that sinusoidal illumination patterns are also useful for ap-

pearance capture, because they simultaneously separate local and non-local reflections
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Figure 4.1: A square pixel in the camera projects, via a planar surface patch, to an
oriented parallelogram in the focal plane of a focused light source. We are interested
in the relationship between the amplitude of the translating sinusoidal radiance pattern
on the focal plane of the light source and the apparent amplitude at the camera’s pixel.
Note that the regions Alight and Apixel are not drawn to scale.

and allow the synchronous recovery of surface geometry. We derive a closed-form expres-

sion describing the relationship between the BRDF and the resulting sinusoid’s apparent

amplitude, validate it experimentally, and discuss its implications.

In addition, using optical triangulation methods to measure the shape of translucent

objects has previously been difficult because subsurface scattering contaminates mea-

surements of the direct reflection at the surface. Optical descattering allows isolating

this direct component, which in turn enables accurate estimation of the shape of translu-

cent objects. Despite encouraging results in recent work, there is currently no rigorous

mathematical analysis of the expected error in the measured surface as it relates to

the parameters of these systems: the frequency of the projected sinusoid, the geometric

configuration of the source and camera, and the optical properties of the target object.

We present the first such analysis, which confirms earlier empirical results and provides

a much needed tool for designing 3D scanners for translucent objects.
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Table 4.1: Summary of notation used in this chapter

x scene point
u = (u, v) point on image plane of camera
p = (p, q) point on focal plane of lightsource
du, dp, dS differential areas on the image plane, source plane, and surface
n surface normal
ωi, ωo local light and view directions
ρ(ωi, ωo) BRDF
σ(u) camera sensitivity function
l(x) lightsource emission function
fl, fc focal lengths of lightsource and camera
ψl, ψc angles from optical axes of lightsource and camera
rl, rc distances from scene point to lightsource and camera centers
Apixel = w2 area of square camera pixel
Asurf area of corresponding region on surface
Alight = ab area of corresponding parallelogram on source focal plane
c signed distance that characterizes the degree of skew in parallelogram
Al, Ac areas of lightsource and camera apertures
Ωl, Ωc solid angles subtended by lightsource and camera as seen by surface
Es(·), Ec(·) irradiance at the surface, and image plane of camera
L(·), Ls(·) radiance emitted at the lightsource, and surface
Φ(·) power (flux)

4.1 Preliminaries

Consider the system in Fig. 4.1. A thin-lens camera observes a planar surface patch that

is illuminated by a custom light assembly, and this light assembly consists of a planar

Lambertian area source placed at the focal plane of another thin lens. The area source

in this light assembly produces radiance patterns that are shifted horizontal sinusoids

with fixed frequency f , amplitude A, and DC offset G. The shifts are represented by

a discrete set of phase values: {φk}k=1...M , so we can write the radiance at a point

p = (p, q) on the focal plane of the source as

Lk(p, q) = A cos(2πf(p+ φk)) +G, k = 1 . . .M. (4.1)
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Illumination from the source is focused at a point x on a planar surface patch, and

this patch is observed by a thin-lens camera, which is also focused at x. A pixel (or

any square region) on the image plane that is centered at the projection of x and has

dimensions w×w measures flux due to the radiance from a neighborhood of the point x

on the surface, and assuming that the camera is a linear device, the intensity recorded at

the pixel is proportional to this flux. Under the sinusoidal illumination of equation 4.1,

the pixel response can be written in the form,

Ik(u) = α(u) cos(γtk + φ(u))) + β(u), k = 1 . . .M, (4.2)

where u = Πc(x) is the projection of x (the center of the pixel), and γ = 2πf(tk+1− tk),

the product of the spatial frequency and the displacement of the sinusoid between con-

secutive shifts. This relation plays a central role in phase mapping techniques (e.g. [Srini-

vasan et al., 1985]), since the apparent phase φ(u) provides information about the depth

of the surface along the ray that is back-projected from pixel u.

Presently, we are interested in the apparent amplitude α(u) since, as we will show,

it provides information about the local surface reflectance (the BRDF at x) and can be

used for reflectometry. We show that, in addition to the BRDF, this expression depends

on the intrinsic parameters of the lightsource and camera, as well as their positions and

orientations relative to the surface.

4.2 Relating the projected and observed sinusoid in-

tensity

We obtain flux incident on the image plane from radiance emitted from the focal plane

of the source using three basic relations.
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Image irradiance from surface radiance. The image irradiance Ec(u) that is

due to radiance Ls(x, ωo) at surface point x in direction ωo is given by the familiar

thin-lens equation,

Ec(u) = σ(u)Ls(x, ωo). (4.3)

Here, σ(u) models optical fall-off in the camera, which for a thin lens depends on the

area of the camera’s aperture, its focal length, and the angle ψc between its optical axis

and the ray through u: σ(u) = σ(ψc) = Ac cos4(ψc)/f
2
c . (See Fig. 4.1 and Table 4.1

for summaries of notation.) More generally, this sensitivity function can be measured

during a radiometric calibration procedure, and we assume it to be known.

Emitted radiance from incident irradiance at the surface. This relation

simply follows from the definition of the bi-directional reflectance distribution function,

or BRDF [Nicodemus et al., 1977]:

Ls(x, ωo) = ρ(ωi, ωo)Es(x). (4.4)

We assume that the scattering properties are statistically uniform over the small area

Asurf observed by a single pixel, and that following the isolation of local reflections [Nayar

et al., 2006], light transport within the material occurs over distances that are small

relative to this area.

Surface irradiance from radiance on the source focal plane. This relation is

less familiar, so we provide a derivation. The basic idea is to compute the power emitted

from the focal plane of the source toward its lens, and then divide this by the differential

surface area δS to obtain surface irradiance. The underlying assumption is that δS is

in focus, so that all of the power that reaches the lens arrives at δS.

Let L be the emitted radiance at the center of a differential patch δp on the focal plane

of the source assembly. The power received by the lens is this radiance multiplied by the
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differential area foreshortened in the direction of travel and the solid angle subtended

by the lens as seen by this small area:

Φ = Lδp · cosψl ·
Al cosψl

(f 2
l / cos2 ψl)

= Lδp · Al cos4 ψl

f 2
l

.

Since it is in focus, all of this power arrives at a differential area on the surface δS,

and the surface irradiance is Es = Φ/δS. The ratio of areas can be obtained by equating

the solid angles subtended by δp and δS as seen by the center of the lens,

δp

δS
=
f 2
l

r2
l

(n · ωi)
cos3 ψl

, (4.5)

and combining these expressions yields the desired relationship:

Es = Al cosψl · L ·
(n · ωi)
r2
l

.

Analogous to the camera sensitivity function described above, in practice we generalize

this expression to

Es = l(x)L(n · ωi), (4.6)

where l(x) is an emission function that can be measured during a radiometric calibration

process and is assumed to be known. In fact, as described in chapter 5, we find it

beneficial to incorporate the r2
l term into this function and thus allow it to vary over

the three-dimensional working volume: l(x).

Equipped with equations 4.3, 4.4, and 4.6, we are ready to proceed. The power

received by the finite pixel area Apixel centered at image point uo (and thus the response
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of that pixel) is the integral of the image irradiance, which by equation 4.3 is

Φpixel = σ(uo)

∫
Apixel

Ls(Π
−1
c (u))du,

where Π−1
c (·) is the back-projection of image point u onto the surface. (In this expression,

we have assumed the sensitivity function to be constant over the pixel.) Using an

expression analogous to equation 4.5, we change variables to integrate over the observed

area (Asurf) on the surface instead, and this yields

Φpixel = σ(uo)
f 2
c

cos3 ψc

(n · ωo)
r2
c

∫
Asurf

Ls(x)dS,

when the pixel is small enough for the angles and distances (ψc, r
2
c , ωo) to be constant

over its extent.

Finally, the surface radiance is related to the radiance on the source focal plane

through equations 4.4 and 4.6, and making these substitutions along with another change

of variables, dS → dp, gives

Φk
pixel = σ(uo)l(po)

f 2
c cos3 ψl

f 2
l cos3 ψc

(n · ωo)
r2
c

ρ(ωi, ωo)

∫
Alight

Lk(p)dp. (4.7)

The last term in this expression is the integral of the sinusoidal radiance pattern (equa-

tion 4.1) over an area Alight that is obtained by projecting the square pixel Apixel onto

the planar surface and into the lightsource. The area Alight is a quadrilateral that, due

to the small extent of a single pixel, is relatively unaffected by perspective distortion and

is well-approximated by a parallelogram, as depicted in Fig. 4.1 and Fig. 4.2. Any such

parallelogram is completely described by the lengths of its sides, a and b, it’s orientation

ξ relative to the horizontal axis of the source focal plane, the position po = (po, qo) of its

center, and it’s skew, which we parameterize by the signed distance c shown in Fig. 4.2.
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ab
c

ξ

focal plane of lightsource

Figure 4.2: The source region Alight corresponding to a single camera pixel, depicted
in a transformed coordinate system (p′, q′) that aligns one side of the region with a
coordinate axis (compare to the left of Fig. 4.1). The shape of this parallelogram is
determined by the lengths of its sides, a and b, and its skew, which is characterized
by the signed distance c. These parameters, along with the position and orientation ξ
relative to the horizontal axis of the source focal plane can be computed from the known
surface geometry and the parameters of the lightsource and camera.

In the present case, all of these parameters are determined by the camera and source

parameters and the surface position and orientation, and since all of these are known,

we can compute the parallelogram parameters corresponding to any pixel in our camera.

In order to compute the integral over this region, we first change the coordinate

system to be aligned with side b and have one corner as its origin as shown in Fig. 4.2.

We use (p′, q′) for these new coordinates, which allow us to write the integral as

∫
Alight

Lk(p)dp =

∫ b

0

∫ c
b
p+a

c
b
p

G+ A cos (2πf(p′ cos ξ − q′ sin ξ + po + φk)) dp
′dq′.

By twice using the identity
∫

cos(sx + t)dx = sin(sx + t)/s, performing trigonometric

manipulations, and using the expression sinc(x) = sin(πx)/(πx), we obtain

ab(A sinc(af cos ξ) sinc(bf sin ξ+cf cos ξ) cos(πf(b sin ξ+a cos ξ+c cos ξ+po+φk))+G).

Now, substituting this into equation 4.7, we obtain an expression for the flux Φk
pixel
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(and thus the pixel response) that is in the desired form of equation 4.2. From this it

follows that the apparent amplitude of the observed sinusoid in the camera satisfies

α(uo) ∝ σ(uo)l(x)ρ(ωi, ωo)(n · ωi)A sinc(af cos ξ) sinc(bf sin ξ + cf cos ξ), (4.8)

where we have used the fact that the total area of the parallelogram Alight = ab is given

by

ab = w2 (n · ωi)r2
cf

2
l cos3 ψc

(n · ωo)r2
l f

2
c cos3 ψl

.

4.3 Implications for reflectometry

The result in equation 4.8 confirms that the apparent amplitude measured at each cam-

era pixel α(u) (Section 5.2 in the main paper) is proportional to the product of the

surface irradiance under point lighting l(x)(n ·ωi) (recall that 1/r2
l is captured by l(x)),

the amplitude of the projected sinusoidal illumination A, the BRDF ρ(ωi, ωo), and the

camera sensitivity σ(u). In addition, it also predicts a less obvious effect that we call

“amplitude loss” whereby the measured response is inversely proportional (via the sinc

functions) to the product of the pixel width w and the frequency f of the source radi-

ance pattern in addition to the relative orientations and distances between x and the

camera and source. In words, if either f or w increase (holding everything else fixed)

the measured amplitude will decrease at a rate predicted by the product of the sinc

functions in Equation 4.8 and eventually reach zero — this corresponds to the point

at which the sine pattern is no longer visible in the image. Similarly, as the camera

approaches a grazing view of the surface in a direction perpendicular to that of the

sine wave with an overhead source held fixed or the distance from x to the camera rv

increases, then the measured amplitude will similarly decrease. This makes equation 4.8

a useful analytic tool for estimating the lower bounds on f for a particular experimental
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setup and, more importantly, it allows converting the amplitude measured at the camera

into measurements of the surface BRDF.

The graphs in Fig. 4.3 confirm this effect and validate the analytic model derived

above. They show the amplitude measured at a camera pixel as it moves toward the

horizon (n · ωo) → 0 with it’s up vector in the epipolar plane and for a stationary

overhead light (n · ωi) = 1. For this “in-plane” configuration, the parallelogram reduces

to a rectangle (c = 0). The three graphs correspond to different orientations of the sine

wave with respect to the plane of motion. These graphs also include predictions by a

numerical simulation that agree with our analytic model exactly — we have verified that

this is true beyond the in-plane case illustrated here. Note that this amplitude loss can

be significant. In the case where ξ = 0, a roughly 20% decrease in the amplitude is

observed at an elevation angle of 60 degrees which falls off to roughly 90% at 80 degrees.

In chapter 5, we use measured amplitudes α(u) for reflectometry, and correct for this

effect by dividing by the terms on the right-hand side in equation 4.8 in order to isolate

the BRDF ρ(ωi, ωo).

4.4 Recovering the geometry of translucent objects

The most common approach for extending optical triangulation methods to handle

translucent objects is to first isolate the direct reflection at the object surface before

recovering geometry. One set of techniques is based on the idea that the specular com-

ponent of the surface response is due to light that reflects directly off of the object surface

while the diffuse component is produced by subsurface scattering. Chen et al. [Chen et

al., 2006] apply a simple threshold to a histogram of the measured intensities in order to

identify specular highlights, which are subsequently used to estimate a high-resolution

normal field. A similar set of methods rely on color heuristics to estimate normal fields
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Figure 4.3: Measurements and simulation results confirming the “amplitude loss” phe-
nomenon and validating our analytic model. Each graph shows the amplitude measured
at a single camera pixel as the view direction approaches the horizon (n · ωo)→ 0 with
the light source held fixed overhead (n · ωi) = 1. The camera’s up vector remains in the
epipolar plane, causing the parallelogram Alight to reduce to a rectangle (c = 0). For the
measurements, we imaged a Spectralon board and corrected for deviations from a perfect
Lambertian reflector. We used the parameters of our experimental setup (focal lengths,
pixel size, stand-off distances, etc.) to perform a numerical simulation of the amplitude
measured at the camera and to evaluate our model in equation 4.8. We observed very
close agreement between measured data, our simulation, and our model.

of human faces [Weyrich et al., 2006] and repair errors in a structured light scan [Barsky

and Petrou, 2001]. These methods generally suffer in the presence of glossy highlights

(as opposed to sharp specular highlights), objects with a small specular response, or

objects whose diffuse color is similar to that of the illuminant. Additionally, they re-

quire a very dense sampling of light directions in order to observe the specular highlight

everywhere over the object surface.

If the light striking a surface is polarized, the portion that is directly reflected at

the surface typically retains this polarization, whereas subsurface scattering acts to

depolarize the light [Tyo et al., 1996] (see figure 4.4). Under this assumption, the

direct component of the scene can be isolated by computing the difference between

images taken behind parallel and perpendicular polarization filters. This approach has

been used in combination with sinusoidal illumination for recovering the geometry of

translucent objects [Chen et al., 2007]. Ma et al. [Ma et al., 2007] extend this idea to use

circularly polarized spherical gradient illumination in order to recover dense normal fields
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of translucent objects such as human faces. However, a limitation of these approaches is

that, for certain materials, light that has been scattered multiple times may still retain

a significant amount of polarization and other materials are known to depolarize light

that is reflected at the surface [Chen et al., 2007].

Figure 4.4: Polarized light that reflects directly off a surface typically retains its po-
larization. A common photography technique is to apply a polarizing filter to remove
direct reflections off bodies of water.

Another approach to the separation of direct and indirect illumination uses optical

descattering. Light that scatters multiple times within the material is significantly dif-

fused whereas light that scatters only once retains the projected pattern and can be

isolated. Chen et al. [Chen et al., 2008] present a method that uses sinusoidal patterns

both for the purpose of isolating the direct surface reflection and for recovering depth

using a standard phase unwrapping technique, a special case of a broader class of phase

profilometry methods [Srinivasan et al., 1985]. Gupta et al. [Gupta et al., 2009] analyze

the effect of defocus on this descattering process and show how to both correct for it

and leverage it for the purpose of depth recovery. More recent work uses the light trans-

port equation to estimate each component of the indirect response through a recursive

procedure [Mukaigawa et al., 2010].
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We build on this prior work and our analysis in 4.2 by providing a radiometric

analysis in the specific case of sinusoidal illumination. This analysis demonstrates the

nature and degree of error in the estimated surface for stereo triangulation systems that

use sinusoidal illumination patterns.

4.5 Depth estimation using active sinusoidal illumi-

nation

Active stereo triangulation systems that use sinusoidal lighting capture a sequence of

images of a scene while it is illuminated by a high-frequency sinusoidal pattern. Between

each exposure, the sinusoid is translated within the lightsource’s focal plane by a known

amount. A key observation about this approach is that summing together multiple

sinusoids with the same frequency produces a sinusoid that also has that frequency:

∑
i

Ai cos(ft+ θi) +Gi = A cos(ft+ θ) +G. (4.9)

Regardless of the properties of the scene, due to the linearity of light transport and the

closure of sinusoids under addition, the intensities {Ii|i ∈ [1, n]}measured at each camera

pixel will trace a time-varying sinusoid, Ii = A cos(ti+φ0)+G, where ti can be calculated

from the spatial frequency of the projected sinusoid and the magnitude of the translation

in the ith image. This fact makes sinusoidal lighting especially desirable for scanning

translucent objects: the signal measured at the camera has a simple relationship to the

signal produced by the source without having to explicitly account for global illumination
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in the scene. The per-pixel amplitude, phase, and DC offset can be computed by solving:


cos(t1) − sin(t1) 1

...

cos(tn) − sin(tn) 1



a1

a2

a3

 =


I1

...

In

 (4.10)

A =
√
a2

1 + a2
2 φ0 = arctan(a2/a1) G = a3

The initial phase offset at each pixel φ0 can be used to identify corresponding rays

between the source and camera and estimate geometry in a process known as phase

profilometry [Srinivasan et al., 1985]. However, many pixels along each epipolar line

will observe the same phase value. Resolving this “phase ambiguity” is a key problem

and a number of solutions have been developed (a good review is provided by Salvi et.

al [2010]). In the following, we will not address this aspect of phase profilometry and

assume the ambiguity can be resolved using one of the available methods. Instead, our

goal is to analyze the effect of subsurface scattering on the recovered phase value at each

pixel and how this in turn biases the estimated depth.

4.6 Phase offet for translucent objects

As illustrated in Figure 4.5, we will assume the scene is composed of a homogeneous

flat translucent surface, which ignores effects due to local curvature or thin shells. The

translucent medium is characterized by the absorption coefficient σa, scattering coef-

ficient σs, and extinction coefficient σt = σa + σs, as well as the medium’s index of

refraction η and phase function p(·, ·). A camera images the scene while the only source

of illumination is a light source modulated to produce a spatially-varying sinusoid (a

“projector”). Translating this projected pattern produces time-varying sinusoids along
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lightsource

camera

medium

Figure 4.5: Setup and notation used in this section. The vector b is perpendicular to ωi
and in the direction of the sinusoid projected into the scene. The function p(ωi, ωo) is
the material’s phase-function. Note that ωi and ωo refer to the incoming and outgoing
vectors inside the medium, unlike in other sections.

individual rays as they leave the projector and strike the surface. Both the projector

and camera are assumed to be orthographic.

Paths of light can reach the camera along the view direction v either due to surface

reflection (green), single scattering within the material (red), or multiple scattering

(blue). We ignore surface reflection by assuming the camera is not positioned along the

mirror direction r. At the surface, the Fresnel equations predict the amount of light that

is transmitted into the medium and Snell’s law predicts the direction it travels due to

refraction, −ωi. Light that enters the object is eventually either absorbed or scattered

until it exits the medium. Scattering occurs according to the material’s phase function

p(ωi, ωo), which characterizes the angular distribution of light scattered when striking a
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particle in the medium.

Some portion of the incident light scatters exactly once in the direction ωo and exits

the medium at point x traveling in the view direction v towards the camera. Another

portion will scatter multiple times before exiting at x in this same direction. The key

assumption in optical descattering [Nayar et al., 2006; Chen et al., 2007; 2008] is that

the contribution made by multiple scattering to the exiting light traveling along v is

unaffected (constant) under translations of the projected sinusoid. Therefore, it only

affects the DC offset of the time-varying sinusoid measured along the camera ray and can

be ignored (we describe a simulation we performed to validate this important assumption

in Section 4.8.1). Building on this prior work, we will assume that only single scattering

contributes to the amplitude and phase of the time-varying sinusoid measured along the

camera ray.

Let Lo represent the response measured by the camera along this ray. An analytic

expression for Lo can be obtained by integrating the contribution due to single scattering

along the camera ray as it travels through the medium. Let Fη represent the percentage

of light lost at the surface due to Fresnel effects while entering and exiting the medium,

fsin represent the spatial frequency of the sinusoid, and φ0 represent the initial phase

offset of the time-varying sinusoid at point x. We integrate along s, the total distance

light travels through the medium – from the point of entrance, to the scattering event,

and to the point of exit. Then, Lo can then be written as

Fηp(ωi, ωo)

∞∫
s=0

e−σts cos(fsin
(n · l)(b · ωo)(n · ωi)
(n · ωi) + (n · ωo)

s+ φ0)

The rate at which the projected sinusoid oscillates along the direction ωo depends both

on the spatial frequency of the sinusoid fsin as well as the sinusoid’s direction of variation

within the medium b, which is always perpendicular to ωi.
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We use the relationship

∞∫
s=0

e−σs cos(As+ θ) =
cos(θ + arctan(A/σ))√

A2 + σ2
,

to derive a closed-form expression for Lo:

Lo =
Fηp(ωi, ωo)√
A2 + σ2

t

cos(φ0 + arctan(A/σt)) (4.11)

where

A = fsin
(n · l)(b · ωo)(n · ωi)

(n · ωi) + (n · ωo)
.

Note that the “phase error” ∆φ = arctan(A/σt). If ∆φ = 0 then the same phase

produced along the projector ray l will be precisely measured along the camera ray v that

intersects it at point x. When this quantity is not zero, this triangulation will intersect

at some point away from x, introducing an error in the estimated depth. Naturally, the

phase error depends on the geometric setup of the projector and camera (through A), the

extinction coefficient σt, and indirectly on the index of refraction η (which determines

ωi and ωo).

4.7 Implications for recovering geometry

The phase error in equation 4.11 has a number of important implications for scanning

translucent objects. The phase error will impact recovered geometry differently based

on the specific experimental setup and reconstruction algorithm that is used. Perhaps

the simplest and most common setup to consider uses one calibrated projector and one

calibrated camera, often referred to as “structured lighting”. In this case, the geometric

error depends on the phase offset scaled by the period of the sinusoid along the camera
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ray v. Specifically, the geometric error ε is equal to

ε =
∆φ

2π

(1− v · l)
fsin

. (4.12)

This relationship allows one to establish upper bounds on ε as a function of the material

properties and system parameters. For example, we can answer the question: how is

ε affected by the spatial frequency of the sinusoid? Figure 4.7 visualizes this relation-

ship by plotting ε, measured in millimeters, for five different materials over a range of

sinusoid frequencies (the graph actually shows the period). Since the maximum error

is bounded by one period of the sinusoid, and assuming the phase ambiguity can be

resolved perfectly, ε tends to 0 as the frequency of the sinusoid approaches infinity. Of

course, as the frequency increases the ability of the camera to resolve it also decreases

(discussed in section 4.7.2). Additionally, note that for optically dense materials such

as marble, lower-frequency sinusoids have less of an impact on ε, because light rays are

not able to penetrate as far into the medium.

Another interesting question is: for a given projector location, where should the

camera be placed to minimize ε? This could be used, for example, to optimize a specific

setup or to drive a view planning algorithm. Figure 4.8 shows upper bounds on ε

derived from equation 4.11 for a fixed projector located 45◦ off the surface normal, and

view directions that vary in the plane formed by the surface normal and direction to the

projector (i.e., l in figure 4.5). Note that as the camera and projector become coaxial,

each camera ray integrates along a matching projector ray so that the phase error is zero;

however, the ability to robustly triangulate two rays diminishes rapidly as the baseline

becomes very small.

Finally, we visualize the manner in which ε depends on the material properties.

Figure 4.9 plots ε for a specific camera/projector configuration and a sinusoidal frequency
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Figure 4.6: Legend for the different materials we consider in section 4.7. Colors corre-
spond to: σt = 0.1mm−1 (ocean water), 0.2mm−1 (chicken broth), 0.5mm−1 (potato),
1.0mm−1 (skin), 2.0mm−1 (marble). These are approximate values based on measure-
ments published by Jensen et al. [2001].

of 2π/5.0 mm−1. Other frequencies follow a similar trend, although the absolute error

varies as seen in figure 4.7.

4.7.1 Relation to phase unwrapping

A common method for solving the phase ambiguity problem is to project progressively

lower-frequency sinusoidal patterns into the scene, until each point receives a unique

phase offset [Ghiglia and Pritt, 1998]. For translucent objects, figure 4.7 gives some

insight into when this “phase unwrapping” may fail. Note that modifying the sinusoid’s

frequency can easily produce a large difference in the phase error in certain cases. If

care is not taken in choosing these progressively lower-frequency sinusoids, each itera-

tion could make the problem of localizing the correct period more difficult. We expect

equation 4.11 will help strengthen these techniques when they are applied to translucent

surfaces.
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Figure 4.7: Geometric error ε for a structured lighting setup. Light and view are at ±45◦

across the surface normal. The colored lines correspond to the materials in figure 4.6.
Ocean water (σt = 0.1mm−1) is the most translucent and has the largest phase offset
error (blue).

Figure 4.8: Phase error (top) and geometric error (bottom, in mm, log-scale) for a light
at 45◦ elevation angle and view directions from −90◦ to 90◦. The index of refraction
η = 1.55, and the sinusoid frequency is 2π/5.0 mm−1, modulated spatially in the plane
formed by the light and camera (worst case). The colored lines correspond to the
materials in figure 4.6.
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4.7.2 Amplitude loss

Although it is possible to decrease the phase error arbitrarily by increasing the frequency

of the sinusoid (figure 4.7), at some point this process breaks down. Each camera pixel

integrates over a finite region of the surface. As shown in section 4.3, this can be

modeled as a convolution of the scene radiance with a compact kernel, which has the

effect of diminishing the measured amplitude of the time-varying sinusoid. At some

point it is no longer possible to reliably measure the amplitude and, consequently, the

phase. Combined with our previous result, this analysis provides a tool for choosing the

optimal frequency in these types of systems: one that is as small as possible to reduce

∆φ while not becoming impractical due to amplitude loss.

4.8 Validation

We validated equation 4.11 using a volumetric ray-tracer [Jakob, 2010] to simulate a

structured light setup (one projector and one camera). This simulation included both

single and multiple scattering, and was used to verify our analysis over a wide range

of parameters including various indices of refraction η and phase functions p(ωi, ωo).

Figure 4.9 compares our simulated data to the predictions made by equation 4.11 for a

range of extinction coefficients.

4.8.1 Multiple scattering

Although light that is scattered multiple times within a translucent object contributes

significantly to its overall appearance, for many materials it has a negligible effect on the

phase error. We performed an additional series of simulations to validate this assump-

tion. We first computed the phase at one camera pixel based on single scattering only,

followed by a full simulation that includes multiple scattering. The projector and cam-
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Analytic Solution
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Figure 4.9: Geometric error ε as a function of the material extinction coefficient for a light
−30◦ and view 45◦ off of the surface normal and a sinusoidal frequency of 2π/5.0 mm−1.
The analytic solution is derived from equation 4.11 and is compared to a simulation of
this setup using a physically-based volumetric ray-tracer [Jakob, 2010].

era were both located ±45◦ off the surface normal, and the phase function was assumed

to be constant (i.e., the parameter g = 0 in the Henyey-Greenstein function [Henyey

and Greenstein, 1940]). We ran these simulations over a range of extinction coefficients

σt ∈ [0.1, 2.0] and spatial frequencies fsin ∈ [0.04, 2.0]. In all of these cases, the difference

between the phases produced for single scattering only and single+multiple scattering

were on average 0.007 radians apart with a standard deviation of 0.005. This offers

further support for our choice to assume that the phase is predominantly affected by

single scattering.



Chapter 5

A Coaxial Optical Scanner for

Synchronous Acquisition of 3D

Geometry and Surface Reflectance

First presented in Holroyd et al. [2010a] at SIGGRAPH 2010.

Previously proposed systems for measuring 3D shape and reflectance suffer from a

number of drawbacks that have limited the development of practical scanners. First,

many systems make restrictive assumptions about the BRDF, and these lead to errors

in the output that are difficult to detect and characterize. Second, systems often use

separate sensors to measure reflectance and geometry, and this leads to a difficult and

error-prone 2D-3D data registration problem that can cause a reduction in accuracy.

Third, most existing systems involve a series of fragile calibration steps that limit us-

ability and degrade the quality of the recovered model. Finally, previous designs often

fail to correctly account for global illumination, such as interreflections and sub-surface

scattering, which contaminate measurements of the desired local surface reflectance.

We address these issues with a simple optical setup and processing pipeline that build
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on recent advancements in multiview stereo, phase-based profilometry, and light descat-

tering. The basic building block in our design is a digital camera and a high-frequency,

spatially-modulated sinusoidal light source aligned to share a common focal point and op-

tical axis.

camera

light
source mirror

beamsplitter Using at least two of these assemblies, it is possible to

capture a sequence of images of an object from different

viewpoints under sinusoidal illumination originating from

different locations. Combining a new active multiview

stereo algorithm and the theoretical analysis of chapter 4;

we show how these images allow recovering precise high-resolution estimates of object

shape and local surface reflectance. Additionally, we show how several scans captured

with our system can be aligned and merged into a single watertight model using existing

techniques.

We analyze several models acquired by our scanner, including those of objects with

challenging material properties such as very shiny spatially-varying surface reflectance.

We show that even in these difficult cases, the measured geometry is accurate to within

50 microns at 200 micron resolution, and the BRDF measurements agree with reference

data to within 5.5% over a wide range of angular configurations. Finally, we show that

images rendered using the acquired models agree very well with reference images at view

and light positions that are far away from those initially measured. We conclude with

a discussion of the larger design space of scanners that may benefit from these coaxial

devices.
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5.1 System Overview

The basic building block of our system, which is depicted in Figure 5.1, is a coaxial cam-

era/lightsource assembly. This produces dynamically-modulated lighting by coupling a

stable source with a translating glass slide, and it effectively co-locates this modulated

lighting with a camera through a beamsplitter. Our prototype system uses two of these

assemblies, and it achieves view and lighting variation using a spherical gantry.

This design is the result of a unified consideration of the three desiderata of the

previous section. Each of the two basic components—the slide-based high-frequency

sinusoidal lighting and the coaxial camera/lightsource pairs—addresses them in multiple

ways.

Coaxial cameras and illumination. Coaxial cameras and light sources have been

previously used for related applications including 3D reconstruction [Lu and Little, 1999;

Zickler et al., 2002; Zhang et al., 2006] and measuring BRDFs and general reflectance

fields [Han and Perlin, 2003; Garg et al., 2006; Ghosh et al., 2007]. We use them in our

design for a number of reasons.

First, these assemblies simplify calibration by allowing us to leverage recent feature-

based camera calibration algorithms [Brown and Rusinkiewicz, 2005; Furukawa and

Ponce, 2008] to automatically calibrate the geometric aspects of both the cameras and

the light sources. Once the assembly is carefully manufactured, the sub-pixel camera

calibration information that is obtained by these automatic methods gives the pose of

the accompanying source without any additional effort. In particular, this eliminates

the need for mirrored spheres or other scene fiducials of known size and position [Lensch

et al., 2003b].

Second, by using two of these coaxial devices, we can easily capture a reciprocal im-

age pair in which the center of projection of the camera and source are swapped [Zickler
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Figure 5.1: Our prototype scanner consists of two identical coaxial camera/lightsource
assemblies (left) mounted to the arms of a four-axis spherical gantry (right). The
coaxial device mounted on the left arm views the object through a mirror (green) to
achieve roughly equal stand-off distances between the two arms. The light is provided
by tungsten-halogen sources with computer-controlled mechanical shutters (white boxes
in image on right).
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et al., 2002]. Reciprocal images allow us to enhance feature-based camera calibration

for surfaces with strong view-dependent specular effects [Zickler, 2006]. Perhaps more

importantly, surface locations occluded in one camera view correspond to shadowed lo-

cations in the reciprocal view. Therefore, these pairs allow one to reason about visibility

before any information is known about the geometry, and allows robustly recovering

per-pixel geometry through multi-view triangulation. Another important property of

reciprocal images is that they provide a constraint on the surface normal by virtue of

the reciprocity of BRDFs. However, we choose not to incorporate this constraint in our

system due to its sensitivity to the radiometric properties of the device and the diffi-

culty of applying it near high-frequency variation in the reflectance such as edges in the

material albedo [Guillemaut et al., 2004].

Third and finally, unlike many designs, our use of coaxial devices and descatter-

ing allows measuring surface backscattering, which can be an important attribute of

appearance.

Modulated lighting with a glass slide. While it is common to use digital projectors

for modulated lighting, we instead create it by coupling a fixed stable light source with

a moving glass slide. This avoids the many non-idealities associated with projectors,

such as vibration, shallow depth of field, limited resolution, light leakage, screen door

effects, and brightness instability (see [Zhang et al., 2006]), and it improves the long-term

stability of any radiometric calibration.

An important attribute of our system is that it extracts both shape and reflectance

information from lighting that is modulated by a single high-frequency sinusoid, which

can be positioned very precisely and repeatably by a translation stage. Like many

phase mapping systems, we use shifted sinusoidal illumination patterns to estimate the

phase offset at a dense set of surface locations in a reference camera [Srinivasan et al.,

1985]. This phase information yields surface depth, but only up to a discrete choice (a 2π
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ambiguity). One way to resolve this ambiguity is to project a sequence of lower-frequency

patterns, but achieving this “phase unwrapping” reliably often requires capturing many

images or, for highly scattering materials, using cross polarization [Chen et al., 2007]

that reduces signal strength; or more sophisticated lighting patterns [Chen et al., 2008]

that are hard to implement without a projector. Instead, we leverage the fact that we

collect images from multiple viewpoints, and we introduce a technique for resolving the

phase ambiguity through triangulation. A quantitative analysis of our results shows that

this method provides depth with sub-millimeter precision (often tens of microns) for a

wide variety of objects. Additionally, we show that after correcting for the amplitude

loss discussed in section 4.3, our system can recover BRDF measurements from objects

with complex geometry accurate to within 5% of reference measurements.

The remaining sections provide a detailed account of our setup and measurement

process before presenting an evaluation of our prototype scanner.

5.2 Experimental Setup

Figure 5.1 shows two photographs of our prototype coaxial assemblies on the left and

our complete scanner on the right. Each assembly consists of a QImaging Retiga 4000R

12-bit monochrome camera with 1024x1024 resolution coupled to a Varispec tunable

LCD RGB filter and a 60mm Nikkon macro lens. Using an external color filter avoids

mosaicing artifacts, but requires taking a separate exposure for each color band. The

light source is a tungsten-halogen fiber illuminator connected through a randomized light

guide. Each illuminator contains a computer-controlled mechanical shutter that allows

interrupting the flow of light onto the guide. The incoming light path is focused onto a

glass slide using a custom focusing assembly, and this slide is located at the focal plane
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of a 50mm Nikkon lens.1 The slide is affixed to a translation stage that steps within the

focal plane in 3 micron increments which are repeatable to within 3 microns.

The camera and light paths are aligned using a four-inch pellicle beamsplitter. We

experimented with several alternatives and found that a large pellicle beamsplitter pro-

duced the cleanest images under co-axial lighting (see the top left image in Figure 5.7).

On the downside, these attract dust and produce spectral artifacts in the emitted light

due to interference at the membrane that must be accounted for during radiometric

calibration. We estimate that the camera and light paths diverge by no more than 0.05◦

over our working volume.

One assembly is mounted to each arm of a computer-controlled four-axis spherical

gantry (Figure 5.1 right) which allows sampling the full sphere of directions to within 0.1

degree of precision around a working volume 25cm in diameter. The stand-off distance

to each device is roughly 1m. For this working volume and camera resolution, we sample

the object surface at 0.2mm intervals.

5.2.1 Geometric Calibration

The spherical gantry is capable of precise angular positioning; however, the position of

each device relative to the object must be known as well. In addition, to compute a

mapping from 3D points to camera pixels, we must know the camera intrinsics including

focal length, principal point, radial and tangential distortion coefficients.

In this section we describe a pipeline for generating a rough calibration with about

5 pixel reprojection error, which is later improved for each scan using the automatic

feature-based refinement procedure described in section 5.3.3 to subpixel precision. Note

that no further steps must be taken to estimate the positions of the light sources since

1Although the same lens would ideally be used along both the camera and light path, physical
constraints of our setup prevented this.
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these are co-located with the cameras. We found this rough geometric calibration to be

stable and did not need to readjust the alignment of our coaxial assemblies even after

months of use.

φobj

θ1θ2

φ2

ARM1

ARM2

φobj azimuthal angle of object platform
θ1 elevation angle of ARM1
φ2 azimuthal angle of ARM2
θ2 elevation angle of ARM2

Figure 5.2: Notation for gantry angles. Each angle is separately controlled by a servo,
and moves independently from the others. Note: φ2 only moves ARM2, not the object
platform.

Using photographs of a stationary checkerboard pattern, we identify corner points in

ever image and perform a non-linear optimization that searches for system parameters

that best predict those corner locations. The initial geometric calibration results in

a 4 × 4 transformation matrix T(φobj, θ1, φ2, θ2) that takes points in world coordinates

and converts them to points in a normalized camera coordinate system, as well as the

camera intrinsics that allow us to project a point in normalized camera coordinates into
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the image.

The best way to conceptualize this matrix is as a combination of many smaller homo-

graphies that take us between simply related coordinate systems. The world coordinate

system is defined during the one-time calibration process by a checkerboard placed in

an arbitrary position on the object platform. No assumption is made about the checker-

board’s alignment, but the size of each square and the fact that it is planar are known.

Homographies

The origin of the world coordinates (defined to be the first corner on the checkerboard)

is at a distance robj away from the object platform’s center of rotation.

Rworld platformOrbit

The first homography is between the world coordinate system and the PlatformOr-

bit coordinate system shown in figure 5.3. The PlatformOrbit coordinate shares the

same origin with the world coordinates, but is rotated by Rworld platform such that the

x-axis points directly away from the object platform’s axis of rotation, a convention

used throughout calibration to define canonical coordinate systems. This rotation has 3

degrees of freedom, and does not depend on any gantry angles, only on the placement of

the checkerboard relative to the axis of rotation. Note that we do not assume the z-axis

of the checkerboard is parrallel to the axis of rotation.

RplatformOrbit platform, TplatformOrbit platform

The platform coordinate system is defined to have its origin centered along the axis of

rotation, the z-axis pointed along the center of rotation (unchanged from the platfor-

mOrbit coordinate system) and its x-axis pointed such that when φobj = 0, it is parallel

with the platform coordinate system’s x-axis (in other words, when φobj = 0, there is

no rotation between the two coordinate systems) as shown in figure 5.3. By defining

the coordinate system this way, the rotation and translation are completely defined by
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Figure 5.3: Relationship between the platform coordinate system (centered at the object
platform’s center of rotation) and the PlatformOrbit coordinate system (with the same
origin as the world coordinates, but rotated so the y axis points out from the circle).

the radius between the checkerboard origin and the axis of rotation (and of course the

known φobj):

double l = calib.platformorbit_radius;

Mat4d platformOrbitTOplatform = homography_axes(

Vec3d( cos(phi_obj), sin(phi_obj), 0.),

Vec3d( -sin(phi_obj), cos(phi_obj), 0.),

Vec3d( 0., 0., 1.),

Vec3d(l*cos(phi_obj),l*sin(phi_obj), 0.));

Figure 5.4: C code for computing the platformOrbit to platform homography.

Rplatform arm1, Tplatform arm1

This is the first arm specific coordinate system. The arm1 coordinate system is defined

just like the platform coordinate system, but for the axis of rotation made by arm1.

Specifically, the origin is at the center of rotation, the z-axis points along the axis of

rotation (away from the arm itself) and the x-axis is defined such that when θ1 = 0,

it coincides with the platformOrbit coordinate system we will introduce next (it points

toward the camera’s position when the arm is at rest). The rotation and transformation

have 3 degrees of freedom each, since the arm1 rotation need not have any relation to
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the platform’s rotation.

Rarm1 orbit1, Tarm1 orbit1

This homography is very similar to the platformOrbit to Platform homography. It

depends only on θ1 and the radius of arm1’s rotation. Figure 5.4 applies directly, but

with θ1 substituted for φobj, and we need to take the inverse. Arm1 is defined with the

x-axis pointed away from the center of rotation, and the z-axis parallel to the arm1

coordinate system’s z-axis. This coordinate system shares its origin with the camera’s

focal point.

Rorbit1 cam1

The final rotation takes the arm1 orbit and rotates it to be aligned with the camera. It

has 3-degrees of freedom. After this final transformation we have arrived at our desired

coordinate system.

Full tree

The full tree of homographies is shown in figure 5.5. The first two homographies are

shared between both arm1 and arm2, and the rest are separate. Note that there is an

additional transformation we have not discussed, which takes platform to platform2.

The platform2 coordinate system is simply rotated backwards by φ2 around the z-axis.

Essentially, rotating arm2 around the platform is identical to rotating the platform itself

in the opposite direction. For example, if we rotate both arm2 and the platform 10

degrees clockwise, there is no net effect on the relationship between the checkerboard

and cam2.

It is important to have a good initial guess for all the unknowns so that the non-

linear optimization will converge quickly, and with a valid position (for example, avoiding

negative radii). Here we step through the initial guess for each homography, which were

obtained by rough measurements with rulers and assuming a particular placement of
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Image2Image1

Cam2Cam1

Orbit2Orbit1

Arm2Arm1

PlatformArm2Platform

PlatformOrbit

Rworld_platform

T(l,φobj) 
R(φobj)

Tplatform_arm1
Rplatform_arm1

T(r1,θ1)
R(θ1)

Tplatform_arm2
Rplatform_arm2

R(-φ2)

T(r2,θ2)
R(θ2)

Rorbit2_cam2Rorbit1_cam1

Intrinisics1 Intrinisics2

Figure 5.5: Diagram for T1 and T2. Each box represents a single coordinate system.
The rotations (R) and translations (T) required to move between coordinate systems
are listed along the arrows.
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the checkerboard.

We start by assuming the checkerboard is placed in the center of the platform, and

the x-axis pointed in the direction of arm1, parrallel to its axis of rotation. For our

specific checkerboard in this configuration, the platform orbit radius (distance from the

checkerboard origin to the platform’s axis of rotation) is approximately 65mm. The

arm1 and arm2 radii are both approximately 840mm.

The rotation from the world to the platform orbit is approximately a 3
4
π rotation

around the z-axis, since the x-axis should point away from the axis of rotation.

When we move from the platform coordinate system to the arm1 coordinate system,

we know the z-axis of the arm1 coordinate system should point away from arm1, which

is roughly in the same direction as the −x axis of the platform coordinate system. Also,

the x axis of the arm1 coordinate system should point straight up, which is the platform

coordinate system’s z axis. Using these facts we can compute the desired rotation

(using homography_axis(x,y,z)). We assume there is no translation so the translation

is initialized to (0, 0, 0).

Finally, after converting to the arm1 orbit coordinate system, we need to rotate to

the final camera position. Again, in the arm1 orbit system the −x axis points in toward

the object, and the z axis points away from arm1, whereas in the camera system the

z axis points in toward the object and the −y axis points away from arm1. An almost

identical process gives us good starting positions for the arm2 side of the homography

tree.

We used Zhang’s chart-based algorithm [2000] to estimate the intrinsic parameters

of each camera independently as a first step. The parameters of each homography are

then solved for using a hierarchical simplex optimization. The final calibration is able

to predict the position of each coaxial device to within about 5 pixel reprojection error

over a 12 inch diameter working volume.
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5.2.2 Radiometric calibration

x

focal
plane

lens

I(u1)

I(u2)

diffuse board

n^^ωl ^ωv

rv
rl

Figure 5.6: Illustration of our procedure for estimating the camera sensitivity and light
emission functions.

In order to convert the response at each camera pixel into a measurement of the

BRDF, we must know the camera sensitivity and light output, both of which depend on

wavelength and position on the respective focal plane. We represent camera sensitivity

using three scalar functions, one for each color band, defined over the image plane:

σ(u), u ∈ R2. We represent light emission using a scalar function that is attached to a

coordinate system associated with the coaxial device. This function is defined over a 3D

volume that tightly encloses the working volume, and we denote it by l(x), x ∈ R3. We

opt to represent this as a 3D function instead of a 2D function on the source focal plane

because the beamsplitter produces spectral variations in the emitted light field that are

difficult to represent with a simple point-source model. One consequence of this choice

is that the inverse-square effect of the light source is absorbed into l(x).

We first estimate the camera sensitivity functions for each device following the pro-

cedure illustrated in Figure 5.6. A planar Spectralon target is held fixed relative to one

of the coaxial devices (red) which provides the only source of illumination in the scene —

the glass slide is removed during this procedure. The other device (green) records sev-

eral images at different viewpoints. Under the assumption that the board is a perfectly
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diffuse reflector, the response at a single pixel I(u) can be written as

I(u) = σ(u)l(x)(n · ωi), (5.1)

where the 1/r2
l term is absorbed into the 3D function l(x) as mentioned above. Each

point in a discrete set of points on the board induces a linear constraint on the sensitivity

function: σ(u1)/I(u1) − σ(u2)/I(u2) = 0. Because we expect σ(u) to be smooth, we

model it as a 10th-order bivariate polynomial whose coefficients are estimated by solving

a constrained linear system of the form Ax = 0, ‖x‖ = 1.

Once we have estimated the camera sensitivity functions we hold them fixed and

estimate the light emission functions l(x). Note that dividing I(u1) by σ(u1) and (n ·

ωi) gives a value of l(x) at the corresponding 3D position. We record a dense set of

measurements at different locations and orientations throughout the working volume

and estimate the value of l(x) at the vertices of a volumetric grid by convolving these

scattered measurements with a wide Gaussian kernel. We used a 128 × 128 × 128 grid

(which corresponds to 1 mm3 voxels) and a standard deviation of 20.0mm.

We performed random sampling cross validation to evaluate the accuracy of our

calibration. We converted the pixel responses into values of the BRDF (presumed to be

perfectly diffuse) at a set of 3D positions uniformly sampled over the working volume

and over orientations of up to 80◦ that were not used for training. For both devices,

95% of the values predicted by our model were within 2% of the correct values and 99%

were within 5%. Note that our calibration only allows measuring the BRDF up to some

unknown global scale. To compute absolute values one would need to measure the power

of the light source which we did not do.
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5.3 Measurement and Processing Pipeline

We acquire multiple 2.5D scans of a target object which are subsequently aligned and

merged into a single 3D model. The final model is represented as a watertight triangle

mesh with a variable-length list of BRDF measurements (local light direction, local view

direction, and RGB vector) at each vertex. This section describes the main steps in our

pipeline in the order they are performed.

1. We acquire a set of images comprising one scan (Section 5.3.1).

2. From these images, we perform descattering and compute the apparent sinusoid

phase and amplitude at each pixel (Section 5.3.2).

3. We apply a feature-based pose refinement algorithm that recovers the positions of

the cameras and light sources to within sub-pixel accuracy (Section 5.3.3).

4. We obtain a dense depth map for each scan using a new multiview phase mapping

algorithm (Section 5.3.4).

5. We align and merge multiple depth maps into a single watertight model (Sec-

tion 5.3.5).

6. Finally, we extract BRDF samples for each vertex in the watertight mesh by ap-

plying appropriate radiometric correction factors (Section 5.3.6).

5.3.1 Raw Images in One Scan

Here we describe the images that are acquired in a single 2.5D scan. The target object

is positioned on a small platform in the center of the working volume, and one of the

gantry arms is selected as the reference frame and held fixed. The free arm is moved to
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Figure 5.7: Some of the raw images acquired in one scan. The yellow bordered images are
captured under co-axial lighting and the blue bordered images correspond to a reciprocal
image pair. Note the high-frequency sinusoidal illumination.

N distinct auxiliary frames, and for each of these auxiliary frames we collect four image

stacks corresponding to the four camera/source combinations (two coaxial images and

two reciprocal images). Each stack consists of M images recorded at different positions

of the active source’s translation stage (i.e., different phase shifts of the projected sine

wave).

Some of the images from one scan of the bird model are shown in Figure 5.7. We

denote images by Iki,j(u), where i ∈ [0 . . . N ] indexes the light source position, j ∈

[0 . . . N ] indexes the camera position, and k ∈ [1 . . .M ] indexes the position within a

stack. For index i (or j), the value 0 is used to represent cases where the source (or

camera) are at the reference frame.
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In images where i = j the object is captured under co-axial illumination, and these

images contain measurements of the surface BRDFs at backscattering configurations.

As shown in Figure 5.7, the sinusoidal pattern is not distorted by the scene geometry

in these cases, and the images are free of cast shadows. These images exhibit a strong

haze caused by reflections from dust on the beamsplitter, but as described below and

shown in Figure 5.8, this haze is conveniently removed by optical descattering.

α0,0(u) α1,0(u)

Figure 5.8: Amplitude maps computed from the stacks along the top row in Figure 5.7.
Note that the strong haze in the coaxial image has been removed. Also, the slight color
differences are due to the varying radiometric properties of the light sources and cameras.

Images where i 6= j comprise reciprocal pairs in which i and j are swapped: (Ii,j, Ij,i).

These play an important role in our pose refinement (Section 5.3.3) and multiview stereo

algorithm (Section 5.3.4).

5.3.2 Amplitude and Phase Maps

Translations of the glass slide induce time-varying sinusoidal irradiance at the object’s

surface. As explained in chapter 4, the response measured at one camera pixel in this

scenario will also be a sinusoid, but with modified amplitude, DC offset, and phase.

The amplitude of the sinusoid is proportional to the amount of light reflected directly

from the surface (“local reflections”) and the DC offset includes the effects of sub-



78

surface scattering and diffuse interreflections (“non-local reflections”) [Nayar et al., 2006;

Chen et al., 2007; Gupta et al., 2009]. The underlying assumption is that the non-local

contributions to the image are constant over the set of phase shifts, and we discuss the

ramifications of this important assumption in Section 4.7.

We model the response at one pixel as: Ik(u) = α(u) cos(γ tk + φ(u)) + β(u), where

α is the amplitude of the cosine, tk is the displacement of the translation stage in the

kth image, γ is the observed frequency with respect to tk, φ is the phase offset, and β is

the DC offset. The frequency γ is equal to the product of the spatial frequency of the

sine wave printed on the glass slide f and (tk+1− tk), the distance the slide is translated

between images.

The values of interest are the amplitude α, which is connected to the surface BRDF,

and the phase offset φ, which gives information about the scene depth along each ray

leaving the camera. Following Chen et al. [2007], we compute these as the least squares

solution of the following system:


cos(γ t1) − sin(γ t1) 1

...

cos(γ tM) − sin(γ tM) 1



c1

c2

c3

 =


I1(u)

...

IM(u)

 (5.2)

α(u) =
√
c2

1 + c2
2 φ(u) = tan−1(c2/c1) β(u) = c3.

Note that the pseudo-inverse of the coefficient matrix can be precomputed as it depends

only on γ and tk which are both known and held fixed. Therefore, computing these

maps is very fast and is done for each color channel independently. We retain a single

phase offset at each pixel by averaging these three values.

Figure 5.8 shows the α(u) computed from the image stacks along the top row in

Figure 5.7. Note that the sinusoidal pattern has been removed along with diffuse inter-
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reflections (most strikingly in the image captured under co-axial lighting). However, a

significant correction factor must be applied before these images can be interpreted as

BRDF measurements (Section 5.3.6). Figure 5.9 shows the phase φ(u) computed from

the image stack in the top right corner of Figure 5.7. We also compute a binary visibility

map V (u) by applying a threshold to α(u). Values below 1% of the camera’s dynamic

range are assumed to be in shadow. By identifying which pixels are in shadow we have

also identified which pixels are not visible in the co-located camera [Zickler et al., 2002].

We leverage this information in our multiview stereo algorithm (Section 5.3.4).

φ1,0(u) V1,0(u)

Figure 5.9: Phase map and visibility map computed from the image stack in the top
right corner in Figure 5.7. The cosine of the phase at each pixel is shown as a grayscale
image.

The frequency of the sine wave printed on the glass slide, f , is an important pa-

rameter. We chose a value of f = 10 cycles/mm because experimentally, we found it

to yield reflectance measurements at a scale suitable for a variety of common objects

— we discuss this parameter further in Section 5.3.6 when we describe our procedure

for recovering measurements of the BRDF from α(u). The displacements tk should be

chosen so that the system in Equation 5.2 is well-posed. Although this requires only

three measurements in theory, we found that translating the glass slide by 0.3/f (0.3

times the period) and capturing a total of M = 10 images gives stable and accurate

estimates.
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Figure 5.10: Feature-based pose refinement. Each column shows a reciprocal image pair,
with reference view in the top row. By detecting intrinsic texture features (white) and
reciprocal specularity features (cyan), the geometric calibration is automatically refined
from an average reprojection error of 5 pixels to 0.3 pixels.

5.3.3 Pose Refinement

In order to realize the potential resolution of our scanner, the reference and auxiliary

locations in each scan must be known to within sub-pixel accuracy. Although stan-

dard calibration algorithms provide this level of accuracy, they require placing precise

fiducials in the scene such as a planar checkerboard with known dimensions [Zhang,

2000]. We achieve a more automated solution by using a feature-based pose refinement

algorithm to improve the rough calibration derived from the gantry configuration. The

key challenge is identifying corresponding scene points in images captured at different

viewpoints. Fortunately, the fact that we acquire reciprocal image pairs allows reliably

locating stable image features even for objects with strong view-dependent appearance

that lack “intrinsic” features [Zickler, 2006] — note that specular highlights remain fixed

to the object surface in a reciprocal pair. We locate corners in α(u) using a Harris de-

tector [Harris and Stephens, 1988] along with specular highlights by applying a simple

intensity threshold. We then match corner features between all pairs of images and

match specular features between reciprocal images by simply eliminating false matches
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using the epipolar constraints provided by the rough calibration. In some cases, we

added additional black and white corners to the scene to increase the number of avail-

able features. However, unlike traditional calibration targets, the 3D locations of these

corners is not assumed to be known. Figure 5.10 shows a typical set of features extracted

from images of the bird model. We found this simple procedure to be very reliable and

we did not need to use more extensive feature vector matching [Brown and Rusinkiewicz,

2005] or employ a statistical outlier rejection method. Finally, we use the Sparse Bundle

Adjustment (SBA) package developed by Lourakis et al. [2004] to jointly optimize the

3D locations of the features and camera positions along with their focal lengths and

principal points. We observed final reprojection accuracy of approximately 0.3 pixels for

all of the models we scanned.

5.3.4 Multiview Phase Mapping

The next step in our pipeline is to compute a dense depth map in the reference frame

of each scan using the phase maps and visibility maps described in Section 5.3.2. Tra-

ditional phase-based profilometry methods use the phase shift observed at each pixel

in conjunction with the pose of the light source to recover the depth up to a 2π am-

biguity [Srinivasan et al., 1985]. This ambiguity is resolved through a process called

phase unwrapping, either by varying the frequency of the modulated light or with some

heuristic such as favoring locally smooth surfaces [Strand and Taxt, 1999].

We take a different approach that does not rely on knowing the pose of the light

source, and we resolve the 2π ambiguity by considering information across multiple

viewpoints: we search along the ray through each pixel in the reference camera to locate

a 3D position that gives consistent phase information over the set of views. This avoids

the need to vary the frequency of the modulated light [Chen et al., 2007] or use more

sophisticated lighting patterns [Chen et al., 2008], thereby simplifying the overall design.
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Also, our multiview matching process benefits from the fact that visibility information

is available before anything is known about the surface by virtue of having captured

reciprocal image pairs [Zickler et al., 2002]. This eliminates the need for reasoning

about scene visibility during matching, which is a significant source of complexity in

standard multiview stereo [Seitz et al., 2006].

Figure 5.11: The search for depth correspondences becomes more stable with more
auxiliary frames. We recommend N ≥ 7 in practice.

Our approach is related to space-time stereo [Zhang et al., 2003; Davis et al., 2005] in

that we deviate from conventional phase-based profilometry by not assuming knowledge

of the light source pose. Like space-time stereo, we instead treat phase information as

“texture” projected into the scene to help establish stereo correspondence. However,

unlike conventional space-time stereo, we use sinusoidal illumination, and this allows

reliably measuring the geometry of objects in the presence of scene interreflections and

subsurface scattering [Nayar et al., 2006; Chen et al., 2007].
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Let (ui) = Πi(x) denote the projection of a 3D point x into the image plane of the

ith camera. At each source location i with an unoccluded view of x, two conditions must

be satisfied for x to lie on the object surface:

φ0,0(u0) = φ0,i(ui) φi,0(u0) = φi,i(ui).

This corresponds to observing the same phase offset in the temporal response measured

at different views when the object is illuminated by the same light source. We treat phase

offsets as unit-length vectors in the plane and measure the agreement between two phases

as the dot product of their respective vectors. This allows writing an objective function

over points x along each ray

ε(x) =

∑N
i=1 piVi,0(u0)∑N
i=1 Vi,0(u0)

, (5.3)

where

pi =
(φ0,0(u0) · φ0,i(ui)) +(φi,0(u0) · φi,i(ui))

2
.

The expression (φa(x) · φb(x)) denotes the inner product of the two vectors associated

with these phase values. Note that ε(x) is bounded between −1 and 1 as long as the

denominator is greater than 0. As expected, increasing the number of auxiliary frames

N causes the function ε(x) to become more peaked around the correct depth as false

matches are eliminated. This is illustrated in the graphs in Figure 5.11 which plot ε(x)

as a function of the depth at one of the pixels in the reference view in Figure 5.7 over

a 3cm interval that straddles the surface. We compute the position x that maximizes

ε(x) in two steps. First, we compute values of ε(x) at 0.1mm increments across the

working volume and locate the sample with the largest value. Second, we fit a quadratic

function to the 3 samples of ε(x) surrounding this maximum and output the depth that
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maximizes this quadratic. We have found that N ≥ 7 is sufficient to recover accurate

geometry (Section 3.3).

We record depth values only at pixels that are visible in at least 3 views and for which

ε(x) > 0.5. In order to reject outliers, we embed the depth map in a graph whereby

pixels are represented as nodes and edges connect neighboring pixels whose depth values

are within 1.5mm (0.5% of the working volume). We then retain the largest connected

component. This removes unwanted elements of the background that are often captured

in the phase maps (Figure 5.9).

5.3.5 Alignment and Merging

We use well established methods for aligning multiple depth maps to one another and

merging them into a single watertight model. Specifically, we use the Iterative Closest

Points (ICP) algorithm [Zhang, 1994] followed by the Poisson surface reconstruction

algorithm of Kazhdan et al. [2006]. At this point we have the original depth maps and

their corresponding reference and auxiliary images registered to the merged model. The

final step is extracting BRDF measurements.

5.3.6 Recovering BRDF Measurements

A significant advantage of using sinusoidal illumination is that the amplitude maps

αi,j(u) carry information about the local reflectance at the measurement scale of the

camera and projected sine wave, even when certain non-local effects, such as diffuse

interreflections, are present in the scene [Nayar et al., 2006].

Amplitude loss. In chapter 4 we derived a closed-form expression for the amplitude of

the time-varying sinusoid measured at a single camera pixel imaging an opaque surface

under projected sinusoidal illumination (equation 4.8).
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This result confirms that the values in α(u) are proportional to the product of the

surface irradiance under point lighting l(x)(n ·ωi) (recall that 1/r2
l is captured by l(x)),

the amplitude of the projected sinusoid A, the BRDF ρ(ωi, ωo), and the camera sensitiv-

ity function σ(u). However, it also predicts a less obvious effect we call “amplitude loss”

(Equation 4.8) whereby the measured response is inversely proportional to the product

of the pixel width w and the frequency f of the source radiance patterns in addition

to the relative distances between x and the camera and source. In words, if either f

or w increase (holding everything else fixed) the measured amplitude will decrease at a

rate predicted by the product of the sinc functions in Equation 4.8 and eventually reach

zero — this corresponds to the point at which the sine pattern is no longer visible in

the image. Similarly, as the camera approaches a grazing view of the surface with the

source held fixed overhead or the distance rv increases then the measured amplitude

will similarly decrease. The graphs in Figure 5.12 confirm this effect and validate our

analytic model.

Based on this analysis, we harvest BRDF samples as follows. Each vertex in the

merged model is projected into the amplitude maps αi,j(u) in which it is visible. No

additional registration between images and geometry is required because the depth maps

and amplitude maps are both computed in the same raster grid, but we do avoid samples

near depth discontinuities (any pixel within 3 pixels of a change in depth ≥10 mm), since

slight misalignments between the individual scans and the merged model may exist. To

convert these samples to BRDF values, we divide them by σ(u), l(x), (n · ωi), and the

product of the sinc functions in Equation 4.8. This produces BRDF measurements up

to a single global scale factor that we do not attempt to estimate.
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Figure 5.12: Top: Geometric setup and notation used in our analysis of “amplitude
loss”. Bottom: Measurements of the amplitude measured at one pixel as a camera
moves towards the horizon with a fixed overhead light in a direction perpendicular and
parallel to the projected sine wave, respectively. The measurements correspond to images
of a Spectralon board corrected to account for deviations from a perfectly Lambertian
reflector.

5.4 Results

In this section we analyze the accuracy of models acquired with our scanner for several

objects that exhibit a range of properties.
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SINGLE SCAN COMPLETE MODEL

Figure 5.13: Error analysis of geometry acquired with our scanner for the frog and bird

models. Comparisons are made to a reference surface obtained by coating these objects
in a diffuse powder and scanning them with a high-end laser rangefinder.

5.4.1 Geometry

We measured the geometric accuracy of our scanner by comparing it to a high-end laser

rangefinder operated by XYZRGB, Inc.2 This laser scanner produces scans at 300 micron

resolution with an accuracy of 20 microns. We scanned the first two objects shown in

Figure 5.16 after first coating them in a removable diffuse powder. The bird is ceramic

and exhibits spatially-varying reflectance including both very shiny glazed regions and

diffuse unglazed regions. The frog is made of painted wood and also exhibits spatial

variation in both the material albedo and in the shape and strength of the specular

reflection.

Figure 5.13 shows individual scans and the final models acquired with our scanner.

We used ICP to align these models to the laser-scanned reference and report the distance

between each vertex and the nearest point on the reference surface. The median error

for the frog model is ∼40 microns and the maximum error in any single scan is 0.25mm.

The median error for the bird model is ∼50 microns and the maximum in any scan is

0.25mm. Figure 5.13 also demonstrates the typical amount of coverage in one scan. Our

2http://www.xyzrgb.com
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data agrees very well with the reference, although there are areas that contain slight

ringing artifacts (e.g., near the neck of the bird and on the arm of the frog) due to

deviations between our measurements and the model expressed in Equation 5.2 as well

as reprojection errors that remain after pose refinement. However, note that these errors

never exceed more than 0.05mm and are typically on the order of 0.02mm. The right

shoulder of the frog and the top of its hands were not visible in any of the scans and

were filled in during the merging process so they deviate more substantially from the

reference.

5.4.2 Reflectance

We measured the BRDFs of two types of spray paint after applying them to a planar

board, removing the glass sinusoidal slides from our co-axial assemblies, and using the

gantry as a traditional reflectometer. We compared this data to measurements obtained

using our scanner for the same planar sample and a curved sample. Figure 5.14 shows

comparisons along with the curved samples for Valspar #66304 Aubergine Silk Interior

Enamel (“red paint)” and Valspar #66307 Lime Pearl Interior Enamel (“pearl paint”).

The two lobes correspond to an elevation angle in the light source of 20 degrees and

40 degrees, respectively, and densely sampled view directions within the plane formed

by the source and surface normal. For both the planar and curved samples, we ob-

served close agreement with the reference data (within 5.5%) over this range of light

and view directions. We also measured the degree of reciprocity in our data using the

set of reciprocal images we acquire in each scan. We observed a median error of 13% for

the red paint and 15% for the pearl paint — within individual scans these errors were

roughly 10%. Although these errors are competitive with prior image-based reflectome-

ters [Marschner, 1998; Dana et al., 1999], they were not low enough to enable refining

the surface normals as is done in Helmholtz stereopsis [Zickler et al., 2002]. We discuss
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this point further in Section 5.5.
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Figure 5.14: Polar plots of reflectance data acquired with our scanner for two types
of spray paint compared to reference measurements. The curved samples are shown in
the insets. The two lobes in each graph show in-plane measurements of changing view
elevation angle, for a fixed light elevation angle equal to 20 degrees and 40 degrees,
respectively. Intensity is plotted relative to a standard diffuse target.

5.4.3 Geometry and Reflectance

We also analyzed the accuracy of our scanner by fitting an analytic spatially-varying

BRDF to the models shown in Figure 5.16. This allows rendering images at view and

light positions that were not initially sampled. The cat object is made of wood and

has both unfinished and polished areas as well as painted regions. For each object,

we acquired 6 scans with 7 auxiliary frames in each scan chosen uniformly within a

cone of 60 degrees around the reference camera. This yields an average of 10 BRDF

measurements per vertex. With this number of measurements, important features of

the reflectance such as specular highlights will only be observed at a relatively small

number of vertices, especially for very shiny objects. Therefore, independently fitting

a BRDF model to the data at each vertex would give poor results. Building on prior

work, we instead model the spatially-varying reflectance as a low-dimensional subspace
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spanned by a small set of “basis” BRDFs [Lensch et al., 2003b; Goldman et al., 2005;

Lawrence et al., 2006]. This allows sharing reflectance data between different vertex

locations (with potentially different orientations) that cover the same material.

We first use the k-means algorithm to separate the surface into clusters based on

the diffuse albedo at each vertex (Figure 5.15 shows the clusters for the cat model).

We fit the parameters of a Cook-Torrance BRDF [1981] to the reflectance data within

each of these clusters (tens of thousands of scattered BRDF measurements). Finally,

at each vertex we estimate a diffuse color and set of convex linear blending weights

(partition of unity) over the specular terms in these k Cook-Torrance BRDFs that give

the best agreement with the measurements. Figure 5.16 compares renderings to reference

images at light and camera positions that are approximately 20 degrees away from the

closest measured ones. The reference image is the amplitude map for one auxiliary

frame that was held out during training. We observed very close agreement for all of

these objects over the entire range of view and light positions. The supplemental video

includes animations of these models rotating under point lighting. Note that achieving

accurate smooth motion of specular highlights over the object surface (e.g., in the bird

model) would require an infeasible amount of data with image-based methods that rely

on approximate geometry. With those methods, these features would be improperly

interpolated wherever the proxy geometry deviated from the true object surface resulting

in “ghosting” artifacts. The fact that we acquire very accurate geometry and reflectance

allows producing convincing smooth interpolations of these high-frequency features from

only 36 light positions.

5.4.4 Capture and Processing Times

Table 5.1 lists the number of individual scans we acquired for each object along with

capture and processing times. It requires roughly 7 minutes to collect the set of HDR
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Figure 5.15: Material clusters computed for the cat model. A photograph is shown
on the left next to false-color images showing the coverage of the four clusters over the
object.

images at each auxiliary frame (Section 5.3.1), 30% of which is spent operating the

translation stage and mechanical shutters and positioning the gantry. The remaining

time could be significantly reduced by using more powerful light sources. Computing

the amplitude and phase maps along with performing pose refinement for one scan with

7 auxiliary frames takes approximately 5 minutes in addition to 10 − 30 minutes to

estimate depth maps. Alignment and merging multiple scans and reconstructing BRDF

samples requires an additional 50 minutes on average.

5.5 Discussion and Future Work

We have demonstrated an acquisition setup and processing pipeline for obtaining accu-

rate high-resolution measurements of the 3D shape and reflectance of opaque objects.

This was enabled by an optical design centered around a co-located camera and high

frequency spatially-modulated light source, as well as a new active multiview stereo al-

gorithm and a theoretical analysis of light descattering with sinusoidal illumination. We

presented results that show geometry captured with our system is accurate to within
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Reference Rendering Reference Rendering

Figure 5.16: Rendered images computed using models captured by our scanner compared
to reference images. The chosen light and view positions are approximately 20 degrees
away from the closest measurement location. Note that we do not attempt to render
shadows.
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Figure 5.17: Preliminary result of using our scanner to measure the appearance of a
translucent object. We do not attempt to render shadows.

50 microns of the true surface on average and agrees with reference reflectance data to

within 5.5%.

Our proposed system represents one point in the larger design space of scanners that

might use coaxial devices, and we anticipate future systems with goals and requirements

that are different from those considered here such as scanning translucent objects. Ad-

ditionally, we believe this work could lead to new tools for appearance scanning “in

the field”. Co-axial camera and light source assemblies reduce the calibration burden

significantly, because the position and orientation of the light source does not need to

be continually re-calibrated. While we rely on a rough chart-based calibration of our

gantry, it is likely that this step could also be replaced by automatic feature-based tech-

niques [Brown and Rusinkiewicz, 2005]. Thus, future work might allow scanning outside

a lab setting with rough placement of multiple co-axial assemblies.

In particular, we believe that similar systems can be used for scanning translucent

objects, and Figure 5.17 shows a preliminary step in this direction. In this example,



94

Model Scans Capture Time Processing Time Total
Bird 7 5.8 h 3.7 h 7.0 h
Frog 6 5.0 h 3.6 h 6.2 h
Cat 6 5.0 h 3.2 h 6.2 h

Table 5.1: Statistics for the results reported in the paper. A portion of the capture and
processing are done in parallel and so the total is less than the sum of these parts.

the geometry and local reflectance were measured and modeled using the same steps

described in Sections 5.3 and 5.4.3, respectively. In addition, we augmented this model

with a single ambient term computed by averaging the response in shadowed regions

in the “indirect” images — the β(u) maps computed in Equation 5.2 — along with an

additional diffuse component at each vertex. For evaluation, we compare the recovered

geometry to a laser scan, and we qualitatively compare a rendering to a “direct+indirect”

reference formed by taking the sum of α(u) and β(u) and interpreting their combination

as the reflection at the object surface and internal scattering below it.

In this example, the geometry is very accurate as seen in a comparison to a laser

scan, but while the local reflectance generally agrees with the reference, there are larger

differences than were observed for the opaque objects in Figure 5.16. We attribute this to

the fact that the sinusoidal illumination pattern is “stretched” by surface foreshortening

so that the effective frequency on an object’s surface changes with the local lighting

direction. This means that different fractions of the scattering are being separated into

the “local” and “non-local” components, and the spatial scale at which the BRDF is

being measured is not constant. We did not see evidence of this effect in the earlier

results because it is negligible for surfaces that are effectively opaque at our chosen

measurement scale. We expect that reflectometry for translucent objects will benefit

from a careful analysis of light descattering for materials with sub-surface scattering

along the lines of our analysis for opaque surfaces.

Another aspect of these illumination systems that deserves more attention is defocus
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in the lightsource. Although we were able to set the aperture on the light path to avoid

artifacts due to a limited depth of field, a proper analysis of defocus would allow using

larger apertures and decrease acquisition time. Some work was recently published on

this topic [Gupta et al., 2009].

We inherit limitations of the light descattering method we build upon and point

out that only diffuse interreflections are completely removed by our system. Other

interreflections could corrupt the data, although we have found that they are often

detectable either as a high residual error in the solution to Equation 5.2 or as outliers

during the search for correspondences in our multiview stereo algorithm.

Another weakness in our final design is the complexity of the radiometric properties

of the lightsource. Although the errors we report are comparable to prior image-based

reflectometry systems, the lack of reciprocity in our measurements prevented us from

refining the surface normals using a method like Helmholtz stereopsis [Zickler et al.,

2002]. Future research is warranted into alternative beamsplitters that minimize wave-

length interference effects in order to incorporate photometric constraints that would

help further improve the quality of the resulting models.



Chapter 6

Conclusion

Measuring the shape and appearance of objects is a challenging task, but has a wide

range of applications including cultural heritage preservation, architecture, law enforce-

ment, industry, and entertainment. This thesis has demonstrated how acquisition can

be simplified and improved by the synchronous measurement of shape and ap-

pearance, in contrast to prior work that measured each independently.

In chapter 3, we demonstrated the first photometric approach for measuring the

shape and appearance of objects with anisotropic materials. For such materials, both

the surface normal as well as tangent direction must be recovered, unlike in the case

of isotropic materials where the tangent direction can be ignored. We observed that

the microfacet distribution of most analytic models as well as measured data exhibit

planar symmetries across the plane formed by the normal and tangent vectors. We then

designed an optimization strategy to locate these vectors using a dense set of images

taken under point light sources, resulting in a normal and tangent vector recovered at

each pixel along with a dense 2D slice of the BRDF.

Chapter 4 introduced our analysis of sinusoidal illumination, which shows how to

simultaneously perform optical descattering, recover 3D geometry, and acquire mea-
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surements of the surface BRDF. In addition, we showed that acquiring the geometry of

translucent objects using sinusoidal illumination is possible for a wide range of materi-

als and sinusoid frequencies. Both of these theoretical results provide a much needed

guide for the design of practical scanning systems, and provide the analysis needed to

simultaneously recover shape and appearance.

A full pipeline for acquiring the shape and appearance of opaque objects was pre-

sented in chapter 5. We combined sinusoidal illumination with a novel optical design

to create coaxial devices, which greatly simplify the joint measurement task compared

to prior work. Using the key result from our analysis of sinusoidal illumination and a

novel multiview stereo algorithm, we demonstrated the capture of complete 360◦ surface

meshes with spatially varying BRDF from physical objects. Our evaluation of the sys-

tem compares the final geometry with state-of-the-art laser scans; the reflectance with

a reference gonioreflectometer; and the final model with reference photographs.

6.1 Quantitative Evaluation

We hope that our rigorous quantitative evaluation of the coaxial scanning system sets

a precedent for future work on shape and appearance acquisition. Such systems can be

very difficult to implement and often require special equipment, therefore it is impractical

for future researchers to reimplement existing systems to make comparisons. As we have

shown, current measurement systems are capable of producing images comparable with

real photographs; however, we believe that reporting direct comparisons with ground

truth geometry and reflectance is important. These comparisons enable future work

to compare quantitatively against prior methods, without relying on vague arguments

about image quality.
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6.2 Future Work

The work presented in this thesis suggests several directions for new research. In partic-

ular, the datasets generated by this work have all been made available to the research

community, and will hopefully enable new experiments that were not previously possible.

Tangent Fields

As discussed in section 3.4, the time-consuming capture of images under dense point light

sources could potentially be alleviated using wider area lightsources. An interesting

observation is that symmetric functions, such as the microfacet distribution, remain

symmetric after convolution with any symmetric filter. Thus, the approach described in

chapter 3 could still be applied to data captured with area lightsources. Using a large

area light would significantly speed up acquisition by reducing camera exposure times,

and also prefilter the BRDF making reconstruction of the function well-posed with fewer

samples even for shiny materials.

Analysis of Sinusoidal Illumination

Our analysis of sinusoidal illumination ignores camera and lightsource depth of field. In

practice, it is often impractical to keep an entire scene in-focus, and so a further analysis

of this effect is needed if we wish to accurate estimate the BRDF for such scenes. If

defocus can be reformulated or approximated as convolutions with the original signal, it

may be possible to reach a simple analytic formula even in this more complex setting.

Acquiring the full appearance of translucent objects using sinusoidal illumination

remains an open problem. In figure 5.17 we show early results using out system for this

purpose, however our approximation of the subsurface scattering is very naive (just a

diffuse color at each vertex). It may be possible, for example by capturing data under
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different frequency sinusoids, to estimate internal scattering parameters of an object and

enable accurate subsurface scattering renderings (figure 2.3 shows an example of such a

rendering, but with manually set parameters).

Scanning Systems

Our scanning pipeline indicates new directions of research in view planning. The location

of auxiliary frames could be chosen adaptively, guided by an online reconstruction of the

shape and reflectance of the target surface. Although prior work has investigated view

planning for SVBRDF acquisition [Lensch et al., 2003b], they assume known geometry.

How to prioritize the goals of accurate geometry reconstruction and SVBRDF sampling

is not obvious.

The fact that our setup produces perfectly registered depth and BRDF maps opens

up new possibilities for alignment and merging techniques that consider both of these

components as opposed to focusing only on geometry. Some related work has been done

on alignment and merging of 3D meshes with RGB texture over their surface [Johnson

and Kang, 1999], but measured BRDF data presents additional challenges due to its

4-dimensional nature and sparse sampling. The datasets we have created should enable

new research in this area that was previous impractical due to the difficulty in creating

a measurement pipeline from scratch.

Finally, the simplified calibration requirements of our coaxial devices suggests new

system designs that would make scanning possible outside the laboratory setting. As

mobile devices become equipped with increasingly powerful cameras, “in the field” mea-

surements that could be taken by a novice user become increasingly practical.
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